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ABSTRACT
Modeling cyber threats, such as the computer malicious software
(malware) propagation dynamics in cyberspace, is an important
research problem becausemodels can deepen our understanding of
dynamical cyber threats. In this paper, we study the statisticalmodel-
ing of the macro-level evolution of dynamical cyber attacks. Specifi-
cally, we propose a Bayesian structural time series approach formod-
eling the computer malware propagation dynamics in cyberspace.
Our model not only possesses the parsimony property (i.e. using
few model parameters) but also can provide the predictive distribu-
tion of the dynamics by accommodating uncertainty. Our simulation
study shows that the proposed model can fit and predict the com-
puter malware propagation dynamics accurately, without requiring
to know the information about the underlying attack-defense inter-
actionmechanism and the underlying network topology.We use the
model to study the propagation of two particular kinds of computer
malware, namely the Conficker and Code Red worms, and show that
our model has very satisfactory fitting and prediction accuracies.
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1. Introduction

Computermalicious software (malware), such as computerworms, aremalicious computer
programs that can replicate themselves to propagate in computer networks. For example,
the Conficker worm, which first appeared in November 2008, rapidly spread in the Inter-
net and infected millions of computers in the Internet within a short period of time. This
malware exploited a vulnerability inWindows operating systems and usedmany advanced
techniques, such as domain generation algorithms, self-defense mechanisms, updating via
Web and Peer-to-Peer (P2P) networks, and efficient local propagation. The other well-
known malware is the Code Red worm, which was first observed in July 2001. This
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malware exploited a buffer overflow vulnerability and quickly infectedmillions of comput-
ers in the Internet. These incidents are just two examples of the many computer malware
that spread in cyberspace, motivating the importance of understanding their propagation
dynamics.

The importance of understanding computer malware propagation dynamics has moti-
vated many studies, which can be categorized into two families. The first family of studies
aim to model the micro-level attack-defense interactions that take place on top of com-
puter networks, leading to the general concept of cybersecurity dynamics (cf. [34] and the
references therein). These models accommodate the widely-studied cyber epidemic mod-
els, such as Susceptible-Infectious-Susceptible (SIS) and Susceptible-Infectious-Recovered
(SIR) and their extensions [1,8,24,26,31,43], as special cases. Recently, Zhao et al. [44]
investigated a model that contains a central node and a multiplex network with a patch
dissemination network layer and a computer malware propagation network layer. This
study considers constraints on the capacity of the central node and the bandwidth of the
network links. This simulation-based study investigates the interplay between the com-
puter malware propagation and the patch dissemination, which compete against each
other. It is worth mentioning that this type of competing dynamics taking place on
top of computer networks were studied earlier in [22,37,38,46]. Feng et al. [14] studied
a Susceptible-Infectious-Recovered-Susceptible (SIRS) model describing the spatial and
temporal dynamics of worm spreading in wireless sensor networks. Srivastava et al. [30]
investigated a Susceptible-Exposed-Infected-Quarantined-Recovered (SEIQR) model for
describing the dynamics of worm propagation in wireless sensor networks. Xia et al. [33]
studied botnet propagation in social Internet of Things, and employed the mean-field
equation theory to analyze the dynamics of botnet propagation. Zhen et al. [45] studied a
particular kind of cybersecurity dynamics caused by the interactions between two classes
of attacks and two classes of defenses. This study tackled a research problem that has been
open for 1 years, by proving that the particular kind of dynamics is globally convergent
in the entire parameter universe of the model. This result was further extended in [21] to
show that an broader class of cybersecurity dynamics model is still globally convergent in
the entire parameter universe of themodel. Han et al. [16] very recently proved that an even
more general class of cybersecurity dynamics is globally attractive, but may not be globally
convergent, hinting that there is an inherent boundary between the cybersecurity dynamics
models that converge to an equilibrium and the cybersecurity dynamics models that con-
verge to a trajectory. Studies in this family of models can be characterized as follows: (i)
they often use high-dimensional and highly-nonlinear differential equations to model the
underlyingmicro-level attack-defense interactions; (ii) they oftenmake some assumptions,
such as the independence between certain events, although weakening such independence
assumption has attracted the due amount of attention [10,35]; (iii) these models are yet
to be evaluated by real-world data because it is hard to collect micro-level attack-defense
interaction activities, which is worsen by the need to protect privacy of such interactions;
(iv) these models are competent for analyzing the asymptotic behavior of the dynamics in
the long run (i.e. the time t→∞), despite that such dynamics may converge exponen-
tially; and (v) these models require full information about the underlying attack-defense
interactionmechanisms, the underlying network topology, and the network security policy
(for deriving what is known as the attack-defense structure [34]).
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The second family of studies aim tomodel the computermalware propagation dynamics
at the macro-level without considering the micro-level attack-defense interactions. These
studies are data-driven, such as those modeling dynamical cyber attack rates, namely
univariate or multivariate time series of the numbers of attempted attacks waged by attack-
ers [3,9,27,28,36,39,41,42]. The present study falls into this family of studies but on a
different problem than dynamical cyber attack rates because computer malware propaga-
tion dynamics corresponds to the time series of the evolution of the number(s) of infected
computers (i.e. successful attacks, rather than attempted attacks). More specifically, our
study is motivated by the following question that have not been investigated until now:
Given only the data describing the macro-level computer malware propagation dynamics (i.e.
no information about the underlying attack-defense interactions, no information about the
underlying network topology, and no information about the network security policy), how
can we model the computer malware propagation dynamics using as few parameters as possi-
ble and predict (or forecast) the transient behavior of the dynamics while accommodating the
potential uncertainty in the data. Answering this question would provide a deep understand-
ing of the computer malware propagation dynamics. The importance of this question can also
be justified by the statistical studies on modeling epidemic spreading outside the domain of
cybersecurity [11,17,20,25].

In this paper, we answer the preceding question by proposing to use a Bayesian Struc-
tural Time Series (BSTS) model to study data-driven computer malware propagation
dynamics in cyberspace. We propose using a Bayesian Local Linear Trend (BLLT) model
to investigate the dynamics of the number of compromised (or infected) computers in
cyberspace, owing to the propagation of a computer malware. We show that our parsi-
monious BLLT model can effectively describe the dynamics and achieve a satisfactory
prediction accuracy, by using both synthetic data and real malware propagation data. The
proposedmode has a clear cybersecurity interpretation.We also discuss how the proposed
model can take uncertainty into account in prediction. More specifically, our model can
characterized as follows: (i) it falls into a statistical modeling approach, which is in contrast
to the differential equation approach mentioned above; (ii) it is data-driven and therefore
can be evaluated using real-world data; (iii) it describes and predicts transient behaviors of
the computermalware propagation dynamics, which is in contrast to the asymptotic behav-
iors mentioned above; and (iv) it is a partial-information model, meaning that it does not
require full information about the underlying attack-defense interaction mechanisms, the
underlying network topology, and the network security policy. In summary, our model
makes a particular contribution to the literature of computer malware propagation model
dynamics in cyberspace, owing to its parsimony property and its Bayesian nature at the
macro level.

The rest of the paper is organized as follows. Section 2 describes the datasets of the
propagation dynamics of two particular computer malware in the real work, known as the
Conficker and Code Red worms, and analyzes their basic statistics properties. Section 3
describes the proposed BSTS model and elaborates its cybersecurity relevance. Section 4
generates synthetic data of computer malware propagation dynamics on top of random
and contact networks, and uses the synthetic data to evaluate the effectiveness of the pro-
posed model. Section 5 uses the proposed model to study the Conficker and Code Red
worms propagation dynamics datasets. Section 6 concludes the paper with future research
directions.
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2. Conficker and code red worms

In this section, we first describe two real-world datasets of computer malware propagation
dynamics and then perform exploratory data analyses on them.

2.1. Data description and preprocessing

Conficker worm. This worm is a particular kind of computer malware. The dataset was
collected between 20:00pm on November 20, 2008 and 6:00am on November 21, 2008,
which is the initial period of the Conficker worm propagation dynamics, by the network
telescope of the Center for Applied Internet Data Analysis (CAIDA) [6]. The CAIDA tele-
scope passively monitors a /8 network (i.e. 224 Internet IP addresses), which are associated
to no Internet services but purely set up to receive (without responding to) incoming con-
nections [2,40]. The telescope can recognize Conficker’s probing packets because they
target the Transmission Control Protocol (TCP) with destination port number 445, which
is the vulnerable service the Conficker worm can exploit. In order to filter out the back-
ground radiation, the last hour data (i.e. 11:00pm-12:00am) monitored by the telescope
on 19 November 2008 was used as a filter such that the packets received by the telescope
during this hour are discarded.

Each Conficker worm probing packet includes a timestamp and a source IP address.
There are a total number of 1,410,742 unique IP addresses in the dataset. In order to ana-
lyze the evolution of the propagation dynamics, namely the evolution of the total number
of infected computers, we aggregate the data into 20-second time windows, resulting in
1,800 time windows. A computer is considered infected by the worm when the telescope
observes the first Conficker probing packet originating from the computer, and an infected
computer is considered recovered from the infection when the telescope observes the last
probing packet originating from the computer before the end of data collecting period. The
last 30 minutes is used as the observation window for determining whether an infected
computer is recovered or not. That is, if the telescope does not observe a previously-
observed infected computer for originating probing packets in this last 30 minutes, this
computer is regarded as having recovered from the infection because the worm is designed
to spread itself. The total number of infected computers at time window t, denoted byCt , is
computed by removing the number of recovered computers from the cumulative number
of unique IPs by the end of time step t. This leads to a total of 1710 observations, namely
{Ct , t = 1, . . . , 1710}.

Code Red worm. The Code Red worm attacked computers running Microsoft’s IIS web
server and was first observed on July 15, 2001. The data analyzed in this paper comes from
three sources: packet headers collected from CAIDA’s /8 network telescope, timestamp/IP
address pairs in TCP SYN packets received by two /16 networks at Lawrence Berkeley
Laboratory, and sampled netflows from a router upstream traffic at CAIDA’s /8 network
telescope. The datawas collected between 19:00UTCon July 18, 2001 and 2:10UTCon July
20, 2001. This preprocessed data is provided by CAIDA, which contains the timestamps
of an IP address for transmitting the worm [6]. For our analysis purpose, we aggregate the
data into 1-minute windows, and record the number of infected computers during the time
windows, leading to a total number of 1,812 observations, denoted by {Rt , t = 1, . . . , 1812}.
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Figure 1. Propagation dynamics of the Conficker and Code Red worms. (a) Ct : the Conficker worm. (b)
Rt : the Code Red worm.

2.2. Exploratory data analysis

The time series plot of the total number of infected computers by theConfickerworm is dis-
played in Figure 1(a). It is observed that the total number of infected computers increases
rapidly during the initial stage, and then shows a steady increasing trend. After reaching the
peak, the number of infected computers shows a decreasing trend. The time series plot of
the total number of infected computers by the Code Red worm is displayed in Figure 1(b).
It is observed that the total number of infected computers increases slowly during the initial
stage and then increases rapidly. After reaching the peak, the number of infected comput-
ers shows a steady trend. It is interesting to see that the dynamics of the Code Red worm
infection is different from that of the Conficker worm.

The boxplots of the numbers of infected computers by the Conficker and Code Red
worms are displayed in Figure 2. For the Conficker worm, the mean number of infected
computers is 179,481 and the median is 192,607. This suggests that the number of
infected computers is very skewed as seen from Figure 2. The sample standard deviation
is 44,295.61, which indicates that there exists a large variability among the numbers of
infected computers. For the number of computers infected by the Code Red worm, the
mean is 158,157 and the median is 56,539. It can be seen that the mean is much larger than
the median, which suggests that the data is also very skewed. The sample standard devia-
tion is 161,143.73, which indicates that there exists a large variability among the numbers
of infected computers. As seen from Figure 2, the numbers of computers that are infected
by the Code Red worm have many more observations on the left tail than the numbers of
computers that are infected by the Conficker worm, which coincides with the Code Red
worm’s slowly-increasing pattern in the initial stage.

Formodeling computermalware propagation dynamics in the real world, it is important
to accommodate the uncertainty that can be incurred by network noise and/or misiden-
tified network traffic. This is possible because, for example, a normal traffic may be
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Figure 2. Boxplots of the numbers of infected computers by the Conficker and Code Red worms.

mistakenly identified as a malicious one (i.e. false positive) and/or a malicious traffic may
be mistakenly identified as a normal one (i.e. false negative). Since Bayesian models are
well suited for accommodating uncertainty and can provide intuitive andmeaningful infer-
ences [15], it motivates us to use the Bayesian approach to model the worm propagation
dynamics.

3. Model and justification

In this section, we present the BLLT model and discuss its cybersecurity relevance.

3.1. Bayesian local linear trend (BLLT)model

The BLLT model is a state-space model with a Bayesian component. Let yt be the obser-
vation (i.e. the observed number of infected computers when casted in the context of
computer malware propagation dynamics) at time t, where t = 1, . . . , n. The model is
described as follows:

yt = μt + εt (1)

μt+1 = μt + δt + εμ,t (2)

δt+1 = δt + εδ,t (3)

where μt is the level value of the trend at time t, δt is the expected increase in μ between t
and t+ 1 and can be treated as the slope at time t, and εt ∼ N(0, σ 2

t ), εμ,t ∼ N(0, σ 2
μ) and

εδ,t ∼ N(0, σ 2
δ ) are noises that reflect the inherent uncertainty and/or measurement error.

Intuitively, Equation (1), dubbed observation equation, relates the observed data yt to the
unobserved latent state μt , and Equations (2) and (3), dubbed state transition equations,
describe the evolution in the latent space.
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The BLLT model has several appealing properties. First, it allows one to infer the
unobserved latent state μt from the observed data up to time t ≤ n, denoted by y1:t =
{y1, . . . , yt} for short. Let αt = (μt , δt)� be the inferred vector at time t in the latent state.
The inference can be achieved by using the Kalman filter and Kalman smoother. At a
high level, the Kalman filter recursively computes the predicted distribution p(αt+1|y1:t)
by combining p(αt|y1:t−1) and yt in a certain fashion; the Kalman smoother then updates
the output from the Kalman filter to compute p(αt|y1:n) at each value of t (see [4,13]). Sec-
ond, it is parsimonious because it has only three parameters; this is an important property
because parsimonious models are always preferred in statistics. Third, it is flexible because
it can quickly adapt to local variations, which makes it capable of short-period predictions
[29]. Fourth, it can accommodate complicated phenomena such as non-stationarity and
structure breaks (e.g. different means or variances [4]), and can be extended to accom-
modate covariates and seasonal trends [29]. Since it is Bayesian in nature, it can provide
distribution prediction rather than point prediction, leading to richer information in the
prediction.

A special case of the BLLT model is called the Bayesian Local Linear (BLL) model [4],
which can be obtained by setting δt = 0 in Equation (2), meaning that there is no slope
(i.e. no increase or decrease in the latent space). That is, the BLL model is:

yt = μt + εt ; (4)

μt+1 = μt + εμ,t . (5)

In order to see if the BLLT model can be replaced by a simpler model, the BLL model is
studied as well.

We propose the following cybersecurity interpretation of the BLLTmodel when casting
it to the context of computer malware propagation dynamics. First, yt can be interpreted as
the observed number of infected computers at time t, which is different from the ground-
truth number μt of infected computers because the infected computers are only partially
observed in practice, owing to a range of factors (e.g. the size of a network telescope, obser-
vation errors incurred by false positive and/or false negatives). Second, εt is the noise
incurred by inherent uncertainties or measurement errors. Third, δt is the increase (or
decrease) inμt over time interval [t, t + 1], and is related to the previous changing amount
δt−1 with random noise εδ,t . Fourth, εμ,t is the noise in μt , which can be incurred (for
example) by the drop of attack packets when the network is congested [7].

3.2. Copingwith the prior distribution of the BLLTmodel

When using a Bayesian model, one needs to cope with the matter of prior distribution. For
the BLLT model, we have the model variance parameter vector

θt = (σt , σμ, σδ)

and the inferred vector αt = (μt , δt)�, where t = 1, . . . , n. That it,

θ = (θ1, . . . , θn) and α = (α1, . . . ,αn)

are respectively the model parameter sequence and the inferred state sequence. Therefore,
we need to specify a prior distribution p(θ) on the model parameter θ1 and a distribu-
tion p(α1|θ1) on the initial vector α1 under model parameter θ1. For parameters θt =
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(σt , σμ, σδ), it is assumed that the prior distribution of the inverse variance is the following
Gamma distribution,

1
σ 2
t

(
1
σ 2

μ

,
1
σ 2

δ

)
∼ G(a/2, b/2),

where G(a, b) is the Gamma distribution with expectation a/b. This implies that b/a is a
prior estimate of σ 2

t (σ 2
μ, σ 2

δ ) and the posterior distribution of the variance is the inverse
gamma distribution [13,29]. The sample variance of the time series that has been observed
so far is used as the prior estimate of the variance.

The initial values of parametersα1 and θ1 are assumed to follow the normal distribution.
The initial value of the mean of μt is set to be y1 because the initial value of the mean is
directly related to the first observation y1, which can be used as an initial estimate. We fur-
ther set the initial value of the mean of δt to be (yn − y1)/n because the difference between
the last observation yn and the first observation y1 reflects the changing trend in the data
and therefore the average difference (yn − y1)/n roughly conveys the slope information.

3.3. Computing the posterior distribution of the BLLTmodel

For computing the posterior distribution, a Gibbs sampler is used to simulate a sequence
(θ(1),α(1)), (θ(2),α(2)), · · · , from aMarkov Chain with stationary distribution p(θ ,α|y1:n).
The sampling algorithm has two parts: the first part samples p(α|y1:n, θ) to derive α, and
the second part samples p(θ |y1:n,α) to derive θ .

For using a Gibbs sampler to simulate the sequence (θ(1),α(1)), (θ(2),α(2)), · · · , we use
the algorithm described in Durbin and Koopman [12] because it is simple and computa-
tionally efficient. Specifically, given the initial parameters a1 and P1 as well as the initial
prior density p(θ1), where a1 is the mean vector of α1 and P1 is the covariance matrix of
α1, Algorithm 1 is used to sample θ(i) and α(i).

Forecasting (i.e. prediction) is conducted using the posterior predictive distribution as
follows. (i) The posterior distribution p((θ ,α)|y1:n) is readily available after simulating
model parameters (θ(i),α(i)). (ii) The distribution of p(yn+1|(θ ,α)) can be estimated based
on the proposed BLLT model. (iii) The predicted distribution of yn+1 is

p(yn+1|y1:n) =
∫

p(yn+1|τ)p(τ |y1:n) dτ , (6)

where τ = (θ ,α).

4. Simulation study

In this section, we perform a simulation study to examine the fitting and prediction perfor-
mances (i.e. accuracies) of the BLLTmodel in different scenarios. In particular, we compare
the performances of BLLT model to that of the classic SIS and SIR models of the propaga-
tion dynamics taking place on top of random and contact networks. This allows us to study
whether or not the BLLT model can describe the computer malware propagation dynam-
ics. The fitting and prediction accuracies of the BLLT model and that of the BLL model
are also compared. The performance of the BLLT model when applied to data containing
observation errors (incurred by misclassifications) is examined as well.
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Algorithm 1 Algorithm for simulating (θ(i),α(i)) sequence
Input: Observations {y1, y2, . . . , }; initial parameters a1 and P1 and initial prior density
p(θ1), where a1 is the mean vector of α1 and P1 is the covariance matrix of α1.
1: for i = 1 toM do
2: Generate a random vector α̇

(i)
1 from the normal distribution N(a1,P1)

3: for t = 1 to n do
4: Generate a random vector θ̇

(i)
1 according to probability density p(θ1) (when t=1,

θ i1=θ1)
5: Compute ẏ(i)

t according to Eq. (1) by replacing θ̇
(i)
t with θ

(i)
t

6: θ̂
(i)
t ← E(θ

(i)
t |yt) and ˆ̇θ(i)

t ← E(θ̇
(i)
t |ẏ(i)

t ) via the standard Kalman filtering and
smoothing equations

7: θ̃
(i)
t ← θ̂

(i)
t − ˆ̇θ(i)

t + θ̇
(i)
t

8: Compute α
(i)
t+1 according to Eq. (2) and Eq. (3) with θ̃

(i)
t ;

9: Sample θ
(i)
t+1 according to the Inverse Gamma density p(θ(i)

t+1|α(i)
t+1, y1:t+1)

10: end for
11: end for
Output: Simulated sequence (θ1,α1), . . . , (θM ,αM).

4.1. Benchmarkmodels

Let (S(t), I(t),R(t)) represent the security state vector of a network ofN nodes, where S(t) is
the number of susceptible nodes that are subject to infection, I(t) is the number of infected
nodes, and R(t) is the number of recovered nodes that are no longer subject to infection. In
the classic SIS model, the dynamics of worm propagation is described by two differential
equations:

dS(t)
dt
= −βS(t)I(t)

N
+ γ I(t),

dI(t)
dt
= βS(t)I(t)

N
− γ I(t),

where β is called the infection rate and γ is called the recovery rate. Note that N = S(t)+
I(t) for any t. In the classic SIR model, the dynamics of worm propagation is described by
three differential equations:

dS(t)
dt
= −βS(t)I(t)

N
,

dI(t)
dt
= βS(t)I(t)

N
− γ I(t),

dR(t)
dt
= γ I(t).

Note that S(t)+ I(t)+ R(t) = N for any t. These models have been widely used in the lit-
erature for modeling epidemic dynamics [34] and are therefore used as benchmarkmodels
in the present study.
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4.2. Simulating the propagation dynamics over networks

In the following, we simulate the propagation dynamics over randomnetworks and contact
networks.

a) Generating synthetic datasetD1 by simulating the SIS dynamics on a random network.
For our experiment, a random network (i.e. graph) G with 1, 000 nodes and independent
edge-probability .1 is generated (i.e. each pair of nodes is connected with an independent
probability .1). After generating the network, we randomly select 50 nodes as infected
ones, and set parameters β = 0.5 and γ = 2. Algorithm 2 is used to simulate the spreading
process.

Algorithm 2 Algorithm for simulating SIS infection
Input: Random graph with 1,000 nodes; infection rate β = 0.5; recovery rate γ = 2;
T = 5.
1: Randomly assign 50 nodes as the infected nodes, and label the state of each infected

node as 1. For a susceptible node, the node state is labeled as 0.
2: while t ≤ T do
3: Generate the random exponential recovery times r1, . . . , rm with rate γ , wherem

is the number of infected nodes at time t. That is, ri = − log(1− ui)/γ , where the
ui’s are randomly generated from the interval (0, 1);

4: For each susceptible node v ∈ S , randomly generate the exponential infection
time ldv based on rate dvγ , where dv is the number of infected neighbors of node v,
and S is set of susceptible nodes;

5: Determine what event occurs first, i.e. t1 = min{r1, . . . , rm, ldv , v ∈ S};
6: if infection occurs then
7: Change the node’s state from 0 to 1;
8: else
9: Change the node’s state from 1 to 0;
10: end if
11: t← t + t1
12: return t and the nodes’ states at time t.
13: end while
Output: The nodes’ states over time T.

The simulated infection time series data, denoted by D1, is aggregated over 500 time
steps. Figure 3(a) plots the number of infected nodes over time. We observe that the num-
ber of infected nodes increases rapidly during the initial time period and then becomes
relatively stable, which is consistent with the theoretic result in a more general setting
[21,45]. The summary statistics show that the mean number of infected nodes over time
is 783.5 and the median number of infected nodes is 950. This suggests that the infection
data is skewed, which is indeed exhibited in Figure 3. The standard deviation of the num-
bers of infected nodes is 291.27, which indicates that there is a large variability among the
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Figure 3. The simulated numbers of infected nodes over a random network. (a) SIS D1. (b) SIR D2.

numbers of infected nodes. This can be explained by the small number of infected nodes
during the initial period but a large number of infected nodes afterwards.

b) Generating synthetic datasetD2 by simulating the SIR dynamics on a random network.
We use the same network in a) to generate a dataset for the SIR model. The initial infected
node is set to be 1. The infection parameter is set to be β = 0.5 and the recovery parameter
is set to be γ = 10. The R package igraph [23] is used to generate the infection data. Then,
we aggregate the number of infected nodes over 500 time steps. Let D2 denote the time
series of the number of infected nodes over time. Figure 3(b) plots the number of infected
nodes over time.We observe that the number of infected nodes increases at the beginning,
then reaches the peak and lasts for a short period of time, and finally decreases to zero. This
is different from the SIS simulation in a) because the recovered nodes cannot be infected
anymore. The summary statistics show that the mean number of infected nodes over time
is 278.7 and the median number of infected nodes is 300. The standard deviation of the
numbers of infected nodes is 135.19. Again, a large variability is exhibited by the data.

c) Generating synthetic dataset D3 by simulating the SIS dynamics on a contact network.
Weuse the R package EpiModel [19] to simulate the data from the SISmodel with a contact
network. There are three parameters for this model: the average number of transmissible
acts per node per unit time α; the probability of infection per transmissible act between
a susceptible and an infected node β ; the average rate of recovery with immunity γ . We
set these parameters as α = 0.25, β = 0.2, and γ = 0.02. The contact network is assumed
to have 1, 000 nodes. The initial number of infected nodes is set to be 50 and therefore
the initial number of susceptible nodes 950, and the time steps are set to be 500. Let D3
denote the time series of the number of infected nodes. Figure 4(a) plots the number of
infected nodes over time. We observe that there is a similarity between this curve and the
curve of the simulation from the SIS model over the random network mentioned above: it
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Figure 4. The simulated numbers of infected nodes over a contact network. (a) SIS D3. (b) SIR D4.

increases rapidly at the beginning and then comes to a steady state, which is consistent with
the theoretic result in a more general setting [21,45]. The difference is that the number of
infected nodes is more fluctuant in Figure 4(a) when compared to Figure 3(a). The mean
and median numbers of infected nodes are 483.5 and 572.0, respectively, and the standard
deviation of infected nodes is 168.27. Similarly, the data D3 shows a large variability.

d) Generating synthetic datasetD4 by simulating the SIR dynamics on a contact network.
Weuse the same parameters as in c) to generate the infection data from the SIRmodel with
a contact network by using the R package EpiModel. The difference is that the recovered
nodes are not subject to infection for the SIR model. Let D4 denote the time series of the
number of infected nodes. Figure 4(b) plots the number of infected nodes over time. We
observe that there is a similarity between this curve and the curve of the simulation for the
SIR model with the random network mentioned above: the infected nodes increases at the
beginning, then reaches the peak, and finally decreases to zero. The difference is that the
number of infected nodes decreases directly after reaching the peak, and the decreasing
trend is slower than that of Figure 3(b). The mean and median numbers of infected nodes
are 83.44 and 51.50, respectively, and the standard deviation of the numbers of infected
nodes is 83.46. Again, we observe a large variability from the data.

4.3. Model evaluation

In this section, we discuss the fitting and prediction performances of the proposed BLLT
model. For evaluation purposes, Di, where i = 1, 2, 3, 4, is divided into two evaluation
periods:Di,1 andDi,2, where the size ofDi,1 is 80 formodel fitting and the rest data ofDi,2 is
used for the prediction evaluation. The prediction performance is assessed based on rolling
prediction, namely that the model is updated when a new observation becomes available.
Algorithm 3 shows the rolling prediction procedure. For Bayesian estimation purposes, the
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Algorithm 3 Algorithm for rolling prediction of malware propagation dynamics.
Input: The number of infected nodes {yi}i=1,...,m+n, where an in-sample {yi}i=1,...,m is used
for fitting and an out-of-sample {yi}i=m+1,...,n is used for evaluation prediction accuracy.
1: for i = m tom+ n− 1 do
2: for t = 1 to 10, 000 do
3: Compute ẏ(i)

t according to Eq. (1) by replacing θ̇
(i)
t with θ

(i)
t

4: θ̂
(i)
t ← E(θ

(i)
t |yt) and ˆ̇θ(i)

t ← E(θ̇
(i)
t |ẏ(i)

t ) via the standard Kalman filtering and
smoothing equations

5: θ̃
(i)
t ← θ̂

(i)
t − ˆ̇θ(i)

t + θ̇
(i)
t

6: Compute α
(i)
t+1 according to Eq. (2) and Eq. (3) and θ̃

(i)
t ;

7: Sample θ
(i)
t+1 according to the Inverse Gamma density p(θ(i)

t+1|α(i)
t+1, y1:t+1)

8: Record (α(i)
t+1,θ

(i)
t+1)

9: end for
10: Use Eq. (6) with (θ ,α)it=8,001,...,10,000 to predict the distribution of yi+1.
11: Use the predicted distribution to compute the mean ŷi+1.
12: end for
Output: Predicted number of infected nodes {ŷi}i=m+1,...,m+n.

MCMC steps are set to be 10,000 and the burn period is set to be 8,000.We use the standard
metrics to assess the fitting and prediction accuracies: MSE (Mean Squared Error), MAD
(Mean Absolute Deviation), MAPD (Mean Absolute Percentage Deviation), and SMAPE
(Symmetric Mean Absolute Percentage Error) [18].

Data D1. We fit D1,1 by using the benchmark model, namely the SIS model, and the pro-
posed Bayesian approach. For the Bayesian models, we examine both BLLT and BLL for
comparison purposes. The fitting results are shown in Figure 5. It is observed that all the
models have good fitting performances.

The prediction evaluation is performed onD1,2, which is shown in Figure 5(b). It is seen
that the benchmark model overpredicts the number of infected nodes. The BLLT and BLL
models predict the infection very well. For a further comparison, we compute the predic-
tion evaluationmetrics in Table 1. It is found that the benchmark SISmodel has a very large
MSE value of 171.3291, while the BLL and BLLTmodels havemuch smallerMSE values. In
particular, the BLLTmodel has the smallest MSE value of 5.7267. Similarly, the benchmark
SIS model has the largest MAD value of 11.4579, while the BLLT model has the smallest
MAD value of 1.9533. Furthermore, the BLLT model has the largest prediction accuracy
of 99.78% based on MAPD and SMAPE, whereas the BLL model has the prediction accu-
racy of 99.70% based on the MAPD metric and 99.64% based on the SMAPE metric. The
benchmark SISmodel has lower prediction actuaries in terms of bothMAPD (98.74%) and
SMAPE (98.23%).

In conclusion, the proposed BLLT model significantly outperforms the other models
based on all the metrics.
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Figure 5. Fitting and prediction of different models for D1. (a) Fitting D1,1. (b) Predicting D1,2.

Table 1. Prediction evaluation of different models for simulated propagation dynamics data.

Metrics MSE MAD MAPD SMAPE MSE MAD MAPD SMAPE

D1,2 D2,2
Benchmark 171.3291 11.4579 0.0126 0.0127 11406.29 98.7111 0.3146 0.3848
BLL 15.2713 2.7344 0.0030 0.0036 8.7482 2.4983 0.0080 0.0177
BLLT 5.7267 1.9533 0.0022 0.0022 3.7661 1.5910 0.0051 0.0072

D3,2 D4,2
Benchmark 14727.59 88.5749 0.1610 0.1373 15.9323 2.7154 0.0366 0.1226
BLL 25.9844 4.0308 0.0073 0.0077 3.4728 1.1506 0.0155 0.0274
BLLT 26.0779 4.0572 0.0074 0.0075 2.9264 1.0853 0.0146 0.0316

DataD2. ForD2, we fitD2,1 by using the benchmark SIR model, and compare it to the fit-
ting performances of the BLL andBLLTmodels. The fitting results are shown in Figure 6(a).
It is seen that the benchmarkmodel has a very poor fitting performance, while the Bayesian
models have much better fitting performances. The benchmark model cannot fit the data
well because the real infection increases very fast even starting from one infected node,
but the benchmark model fails to catch up with this rapid increase, which causes a signif-
icant underprediction of the number of infected nodes by benchmark model, as shown in
Figure 6(b). The BLLT model can adapt quickly to accommodate the data and has a very
good fitting and prediction performance.

For the prediction accuracy metrics on D2,2, Table 1 shows that the benchmark model
has very large MSE (11,406.29) and MAD (98.7111), whereas the BLLT model has the
smallest values (MSE of 3.7661, MAD of 1.5910). In terms of the percentage accuracies,
the benchmark model is only able to achieve 68.54% accuracy inMAPD and 61.52% accu-
racy in SMAPE. The BLLT model can significantly improve the prediction accuracies to
99.49% in MAPD and 99.28% in SMAPE.

In summary, the BLLT model has the best prediction performance for D2.
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Figure 6. Fitting and prediction of different models for D2. (a) Fitting D2,1. (b) Predicting D2,2.

Figure 7. Fitting and prediction of different models for D3. (a) Fitting D3,1. (b) Predicting D3,2.

DataD3. TheD3,1 is fitted by the benchmark SIS model and the proposed Bayesian mod-
els. The fitting results are shown in Figure 7(a). Generally, all of the three models have
good fitting performances, which are similar to the case of D1,1. The prediction results are
shown in Figure 7(b). It is observed that although the benchmark SIS model has a good fit-
ting performance, it significantly overpredicts the number of infected nodes forD3,2, which
is mainly caused by its weak capability in quickly adapting to accommodate the changes.
Both the BLL and BLLT models can predict the worm prorogation well.
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Figure 8. Fitting and prediction of different models for D4. (a) Fitting D4,1. (b) Predicting D4,2.

Table 1 shows the prediction metrics for all of the models. It is seen that the prediction
performance of the BLLmodel is comparable to that of the BLLTmodel. Bothmodels have
similar prediction performances, and are much better than that of the benchmark model.

DataD4. We fitD4,1 by using the benchmark SIRmodel and the proposed Bayesian mod-
els. The fitting results are shown in Figure 8(a). It is seen that the benchmark model can
generally follow the increasing trend and that both Bayesian models are fitting very well. It
is interesting to compare the fitting performance to that of D2,1 by the benchmark model.
The improved fitting performance of the benchmark model for D4,1 can be attributed to
the initial infection number. For D4,1, the initial number of infected nodes is 50, which
is compared to the one infected node of D2,1. This is also the reason why the benchmark
model can capture the increasing trend of D4,1.

The prediction performances of D4,2 are shown in Figure 8(b) and Table 1. It is seen
that although three models can predict well, the BLLT model still outperforms the other
models based on the MSE, MAD and MAPD metrics. The SMAPE of the BLL model is
slightly smaller than that of the BLLTmodel. In particular, the BLLTmodel has the highest
prediction accuracy of 98.54% in MAPD.

Data with misclassified traffics. Since the propagation dynamics data may include mis-
classified traffic, namely false positives and false negatives in practice, we study model
performance based on the aforementioned dataD1, which is obtained by simulating the SIS
model with a random network in the presence of observation errors. We assume that the
number of misclassified traffic follows the Gaussian distribution withmean 0 and standard
deviation 10, meaning that the misclassification includes both false-positives and false-
negatives. Figure 9(a) plots the ground-truth number of infected nodes and the observed
number of infected nodes, and shows that the observed number of infected nodes has a
large variability owing to the false-positives and false-negatives.
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Figure 9. Using different models to fit and predict D1 in the presence of false-positives and false-
negatives, where blue curves indicate the upper and lower bounds of the 95% prediction interval. (a)
Fitting D1,1 with misclassifications. (b) Predicting D1,2 with misclassifications.

For fitting accuracy, Figure 9(a) shows that the fitted BLLT and BLL models generally
follow the increasing trend of the ground-truth, but can oscillate, owing to observation
errors. For predicting accuracy with respect to D1,2 with observation errors, Figure 9(b)
shows that the observed number of infected computers has large variability caused by the
false-positives and false-negatives.

Table 2 reports the prediction accuracy metrics, and shows that the BLLT model out-
performs the BLL model in terms of these metrics. By comparing the prediction accuracy
results reported in Tables 1, we see that false-positives and false-negatives cause the much
less accurate prediction results. It is also seen that the BLLTmodel is more robust than the
BLL model in terms of the prediction accuracies. As an advantage of the Bayesian model-
ing approach, the prediction interval can be easily provided. In Figure 9, we show the 95%
prediction interval for the BLLT model. It can be observed that the ground-truth falls into
the 95% prediction interval.

To conclude, the proposed BLLT model has an excellent fitting and prediction perfor-
mances on the malware propagation dynamics based on synthetic data. It can adapt to
accommodate local (transient) variations in the dynamics very quickly and produce the
high accurate prediction, whereas the benchmark SIS and SIR models have the drawback
of not being able to adapt to accommodate the variations exhibited by the data. Further, the

Table 2. Prediction accuracy with respect to
D1,2 in the presence of false-positive and false-
negative observation errors.

MSE MAD MAPD SMAPE

BLL 167.6308 10.4146 0.0115 0.0119
BLLT 145.0861 9.6581 0.0106 0.0108
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BLLT model is more robust than the BLL model. If the propagation dynamics data con-
tains misclassifications, the proposed BLLT model can accommodate the uncertainty by
providing the prediction intervals.

5. Applications

In this section, we study the fitting and prediction performances of the proposed BLLT
model on the propagations of the Conficker and Code Red worms. The performances of
the proposed BLLT model to the other commonly used models are compared as well. We
further discuss how to use the proposed BLLT model in practice.

5.1. Conficker worm

For the Conficker worm, the first 300 observations are used for the model fitting, and the
rest 1,410 observations are used for assessing prediction performance. Before evaluating
the model fitting and prediction accuracies, the convergence of MCMC chain during the
fitting procedure is verified to confirm that the Bayesian approach can be employed. The
Gelman-Rubin approach is used to determine the convergence [5]. When the chain con-
verges, the Gelman-Rubin statistic R̂ should be close to 1. We test five chains with size
10, 000 and with different initial values for the parameters (σt , σμ, σδ). The correspond-
ing Gelman-Rubin statistics R̂ are respectively 1.0103, 1.0124, 1.0399, which are all smaller
than 1.1. This indicates that the MCMC approach is suitable for the Conficker worm data.

The fitting curve of the BLLTmodel is shown in Figure 10(a). For comparison purposes,
the fitting of the BLL model is also displayed. It is seen that both models can fit the worm
propagation data very well. Prediction is performed by the rolling approach of Algorithm 3
and plotted in Figure 10(b). It is observed that both models have very good prediction per-
formances. The prediction accuracy metrics are reported in Table 3. It is seen that theMSE
and MAD of the BLLT model are much smaller than those of the BLL model. Further-
more, the BLLT model can achieve a 99.98% prediction accuracy when compared to the
99.94% accuracy of the BLLmodel in terms of MAPD, and a 99.98% accuracy vs. a 99.93%
accuracy in terms of SMAPE.

In Figure 11, the prediction intervals for the Conficker worm at 95% and 99% levels are
displayed. Figure 11(a) shows the overall prediction intervals, and Figure 11(b) displays
a zoomed part of the prediction. It can be observed that the prediction intervals are very
narrow at both predictive levels.

Model comparisons. We compare the fitting and prediction performances of the BLLT
model on the Conficker worm with those of the statistical models proposed in the litera-
ture, including the AutoRegressive Integrated Moving Average (ARIMA) model [32,41],

Table 3. Prediction evaluation of different models
for the Conficker worm.

MSE MAD MAPD SMAPE

BLL 30291.29 127.0138 0.0006 0.0007
BLLT 5609.875 45.74324 0.0002 0.0002
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Figure 10. Fitting and prediction of different models for the Conficker worm propagation data. (a)
Fitting. (b) Prediction.

Figure 11. Prediction intervals for the Conficker worm at levels 95% and 99%. (a) Prediction intervals.
(b) Zoomed prediction intervals.

the Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) model [42],
and the Bayesian Negative Binomial (BNB) model [3].

Model fitting is performed on the first 300 observations. To develop an ARIMAmodel,
the ADF test is used to determine where a unit root is present in the Conficker worm data.
The p-value of ADF test is smaller than 0.01, which suggests that no difference is needed
for modeling the Conficker worm data. The AIC suggests that ARIMA(1,0,1) model is suf-
ficient for the modeling purpose. For the GARCHmodel, the AIC is also used to select the
model, which suggests that themean part can bemodeled asARMA(1,1) and the variability
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Figure 12. Comparing the fitting and prediction performances of different models based on the Con-
ficker worm propagation data. (a) Fitting. (b) Prediction.

part can be modeled as GARCH(1,1). The BNB model [3] is also used for fitting the Con-
ficker worm data. The fitting performances of different models are shown in Figure 12(a).
It is seen that when compared to the BLLT model, the ARIMA model also has a good
fitting performance; the GARCH model has a poor fitting performance for the first few
observations, then shows a good fitting performance for the rest of the observations; the
BNB model has a very poor fitting performance, which suggests that the Conficker worm
data does not follow the negative binomial distribution.We further compare the prediction
performances of the ARIMA and GARCHmodels to that of the BLLTmodel, based on the
rolling prediction of rest 1410 observations. The predictions of the threemodels are shown
in Figure 12(b), and it is seen that all of the models have good prediction performances.

Table 4 presents the prediction accuracy metrics. It is observed that the BLLT model
outperforms the other models in terms of all of the metrics. Particularly, the BLLT model
significantly outperforms the other models in terms of the MSE and MADmetrics.

5.2. Code redworm

Similar to the previous subsection, the first 300 observations are used for model fitting,
and the rest 1, 512 observations are used for assessing the prediction performance. The
Gelman-Rubin statistic is used to determine the convergence as well. We test five chains
with size 10, 000 and with different initial values for the parameters (σt , σμ, σδ). The cor-
responding Gelman-Rubin statistics R̂ are respectively 1.0018, 1.0374, 1.008, which are all

Table 4. Prediction evaluation of different models
for the Conficker worm.

MSE MAD MAPD SMAPE

ARIMA 16285.51 92.0162 0.0005 0.0005
GARCH 12737.8 71.0670 0.0004 0.0004
BLLT 5609.875 45.74324 0.0002 0.0002
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Figure 13. Fitting and prediction of different models for the Code Red worm propagation data. (a)
Fitting. (b) Prediction.

smaller than 1.1. This indicates that the MCMC approach is suitable for the Code Red
worm data.

The fitting plot of the BLLT model is shown in Figure 13(a). For comparison purposes,
the fitting of the BLL model is displayed as well. It is again seen that both models can fit
the worm data very well. The prediction is shown in Figure 13(b), and it is observed both
models have a very good prediction performance. The prediction accuracy metrics are
reported in Table 5. It is seen that the MSE and MAD values of the BLLT model are much
smaller than that of the BLL model. The BLLT model can predict with a 99.97% accuracy,
when compared to the 99.85% accuracy of the BLL model in terms of MAPD (or 99.93%
vs. 99.59% accuracy in terms of SMAPE).

For the Code Red worm propagation data, the prediction intervals are shown in
Figure 14 at both 95% and 99% levels. Figure 14(a) shows the overall prediction intervals,
and Figure 14(b) displays the zoomed part of the prediction. Again, it can be observed that
the prediction intervals are very narrow at both levels.

In summary, we conclude that the BLLT model can predict the dynamics of Code Red
worm propagation very well.

Model comparisons. Similar to the Conficker worm, we perform the model comparisons
as follows. The AIC suggests that ARIMA(0,1,2) model is suitable for the modeling

Table 5. Prediction evaluation of different models
for the Code Red worm propagation data.

MSE MAD MAPD SMAPE

BLL 377225.7 282.9071 0.0015 0.0041
BLLT 77339.74 59.9474 0.0003 0.0007
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Figure 14. The prediction intervals for the Code Red worm at the 95% and 99% levels. (a) Prediction
intervals. (b) Zoomed prediction intervals.

Table 6. Prediction evaluation of different models
for the Code Red worm propagation data.

MSE MAD MAPD SMAPE

ARIMA 132476 108.9276 0.0006 0.0014
GARCH 146288.3 148.5909 0.0008 0.0021
BLLT 77339.74 59.9474 0.0003 0.0007

the Code Red worm data. For the GARCH model, the AIC suggests to use the
ARMA(1,1)+GARCH(1,1) model. For fitting, it is found that both the BLLT and ARIMA
models have good fitting performances, while the GARCH and BNB models have poor
performances. This observation is similar to what is observed in the case of the Conficker
worm data. Prediction results are reported in Table 6, which is based on the rolling predic-
tion of the rest 1,512 observations. It is again observed that the BLLT model significantly
outperforms the other models.

5.3. Using BLLT in practice

We propose the following three-step procedure for using the BLLT model to predict
malware propagation in practice.

(1) Data collection. For modeling real-world malware propagation, the first step is to col-
lect data, and then aggregate the data into time windows of a desired time unit (e.g.
second, minute, or hour).

(2) Modeling. Use Algorithm 1 to generate a large number of simulated sequence of
parameters for the BLLT model (e.g. 10, 000).

(3) Prediction. Use Algorithm 3 to predict the distribution of the future value and
calculate the predictive quantities of interest.
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Figure 15. The histogramof the predicted number of infected computers by the Confickerworm,where
the vertical line represents the real observation.

Table 7. Predicted intervals of the
number of infected computers by
the Conficker worm.

Interval Prob

[175600,175800) 0.0021
[175800,176000) 0.0509
[176000,176200) 0.2765
[176200,176400) 0.4369
[176400,176600) 0.2051
[176600,176800) 0.0265
[176800,177000) 0.002

For example, for the Conficker wormdata, the distribution of the last observation can be
predicted. The histogram of predicted infection is shown in Figure 15. The last observation
is 176, 155, which corresponds to the 24.53% percentile of the predicted distribution. In
practice, one can create the prediction intervals as shown in Table 7, which would be more
straightforward for practitioners to use. From Table 7, it is seen that the last observation
falls into the interval [176000, 176200), which occurs with a 0.2765 probability.

In summary, the proposed BLLTmodel has very satisfactory fitting and prediction per-
formances for the real-world Conficker and Code Red worm propagation data. Since it
is a Bayesian model, it can naturally handle the noise in the data by providing predictive
distribution.

6. Conclusion

We have proposed using the BLLT model to model the data-driven, macro-level com-
puter malware propagation dynamics in cyberspace, without requiring the various kinds
of information about the micro-level attack-defense interactions. The proposed model not
only possesses the parsimony property (i.e. using only three parameters), but also can
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provide the predictive distribution (i.e. accommodating uncertainty that is often encoun-
tered in practice). Both simulation and empirical studies show that the proposed Bayesian
approach has satisfactory fitting and prediction accuracies. When compared with tradi-
tional time seriesmodels, the proposed approach achieves a substantially higher prediction
accuracy. For the Conficker worm propagation dynamics, the prediction accuracy of the
proposed approach is 65.56% higher than that of the ARIMA model and 55.96% higher
than that of the GARCHmodel, bothmeasured in theMSEmetric; for the Code Redworm
propagation dynamics, the prediction accuracy of the proposed approach is 41.62% higher
than that of the ARIMA model and 47.13% higher than that of the GARCH model, both
measured in the MSE metric. We hope this study will motivate more studies on statistical
approaches to modeling the computer malware propagation dynamics in cyberspace.

Future studies include the investigation of computer malware propagation dynamics
with complex propagation patterns. For example, the proposed model may be adjusted or
extended to accommodate covariates to improve the fitting and prediction accuracies when
additional information on the propagation dynamics is available (e.g. network traffic flow
information).
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