Computer Science

I-C-S

The Institute for Cyber Security

Toward A Code Pattern Based Vulnerability Measurement Model

Goal

- >

Bug/ Code
Repositories

e We propose a framework to detect access
{CWE, GitHub, ..}

John Heaps, Rocky Slavin, Xiaoyin Wang

control bugs based on code pattern detection
e EXxisting bug detection approaches for access
control are process-based and suffer from

S— -

many limitations Legend:
e Our empirical analysis-based framework will D Process
mine and generate bug patterns, detect those [] Artifact

patterns in code, and calculate a vulnerability
measure

e Our framework will determine the severity of
vulnerability caused by bugs and allow
stakeholders to make informed decisions
about software

Pattern Detection

e SpotBugs is utilized to perform pattern detection using
the repository of patterns from the Learning Engine.
e [0 estimate vulnerabillity, bug patterns are linked to
abstract quality aspects:
o Control Integrity: how likely the software may
iIncorrectly interact with its users.
o Data Integrity: how likely the software may provide
Incorrect output.
o Data Confidentiality: how likely the software may
release data to entities not authorized to receive it.
o Data Availability: how likely the software may not
be able to provide data that should be in storage.

Improper Authorization Example
Abstract Qualities:
Control Integrity: ©
Data Integrity: ©
Data Confidentiality: 1
Data Availability: ©

0 denotes that the quality is unaffected by
the bug

1 denotes that the quality is affected by the
bug

Learning Engine

Configured
Measurement
Model

e Bug definitions and categories are collected

) ' Measurement

l from the Common Weakness Enumeration
(CWE)

Pattern-Failure - -
Concrete Patterns Correlation MocEleIt_par?meter Vulnerability e Code-level bug examples are collected from
Estimation sumauon Estimation Github

Impact = A * Integritycontrol + B * Integritypata

1 l Improper Authorization Example Bug Code:
Vulnerability

Measurement
Results

public ResultSet runEmployeeQuery(Connection conn, String name){
PreparedStatement stmt = conn.prepareStatement("SELECT * " +
"FROM employees WHERE name = ?");
stmt.setString(1, name);
ResultSet ts = stmt.executeQuery()
return rs;

i

I

Code Pattern ; .
Botection Test Integration ,

I

I

}

// "canQueryEmployee()" returns true if current user is authorized to
// query the employees table.
if(AuthCheck.canQueryEmployee()){

ResultSet employeeRecord = runEmployeeQuery(dbConn, employeeName);

}

Improper Authorization Example Bug Pattern:

Measurement

public void sawOpcode(int seen) {
if ("AuthCheck".equals(classConstant) &&

Model |

if (seen == IFEQ && (PC >= seenGuardClauseAt + 3 && PC <
logBlockStart = branchFallThrough;
logBlockEnd = branchTarget;

seen == INVOKESTATIC &&

"canQueryEmployee".equals(nameConstant) && "()Z".equals(sigConstant)) {
seenGuardClauseAt = PC;
return;

seenGuardClauseAt + 7)) {

Estimates the vulnerability of a piece of software AL 8 "t oot emtontane <
based on the detected instances of code patterns. R 2 e e e natEey
The following formula generates a vulnerability value sttt e
in the range [0, 1]; Detected is the set of found bug }

pattern instances, Risk denotes the risk value of a

given bug b, and R is a constant which represents the

average risk sum per software project.

R
R+ 2 Detected Risk(b)

Future Work

Vulnerability = 1 —

e Bug patterns are currently produced manually, which
Is slow and tedious; we plan to investigate machine
learning applications to help automatically generate
bug patterns.

e SpotBugs is Java specific and requires built software

projects to perform detection; we plan to implement

other tools to overcome these limitation.

The current test coverage integration is preliminary,

so we plan to further develop it to include automatic

test generation and execution of test cases for each
software feature.

e \We plan to integrate positive code pattern detection to
estimate the mitigation of risks in software projects.

Risk is determined by calculating the Impact of a bug
and that bug’s Susceptibility; Susceptibility indicates
how likely the bug will be triggered at run time and is
estimated using testing.

Risk = Impact = Susceptibility

Impact is calculated by summing the weighted o
aspects identified in Pattern Detection.

+ C x Confidentialitypgtq + D * Availabilitypgiq

We would like to thank the MSI STEM Research & Development Consortium (MSRDC, Award #D01_W911SR14-2-0001-0012), the National Science Foundation (NSF, Award #1736209), and CREST
Center for Security and Privacy Enhanced Cloud Computing (C-SPECC, Award #1736209) for their contributions to this project.

