
Toward a Pattern-Based
Measurement Model for

Improving Software Reliability
Presenter: John Heaps

University of Texas at San Antonio

1

Researchers: John Heaps, Rodney Rodriguez, Xiaoyin Wang, and Jianwei Niu

Goal
● The reliability of software systems is essential in making decisions on

real-world problems, but how do we determine the reliability of those
systems?

● We propose a framework to detect bugs based on code pattern detection

● Our empirical analysis-based framework will mine and generate bug patterns,
detect those patterns in code, and calculate a vulnerability measure

● Our framework will determine the level of reliability, affected by bugs, and
allow stakeholders to make informed decisions about software

2

3

Learning Engine

4

Learning Engine

● Mine bug repositories (CWE, NVD, etc.) for bug categories, descriptions, and
code snippet examples

● Create concrete patterns from mined bugs

● Link patterns to abstract qualities in order to perform reliability calculations
○ data, behavior, performance, security, and design

5

Pattern Detection and Test Integrator

6

Pattern Detection and Test Integrator

● Concrete bug patterns used to detect bugs in code using SpotBugs

● Identification of a bug pattern only indicates a strong possibility of a bug, not
the existence of one

● Will use targeted testing on parts of code that contain bug patterns to
determine if the bug can actually be triggered

○ If it can’t, it is weighted less when calculating Reliability
○ If it can, it is weighted more when calculating Reliability

7

Reliability Model

8

Reliability Model
● Abstract qualities across all identified bugs are used to calculate Reliability
● Impact is a weighted sum of the abstract quality values of a bug
● Susceptibility is the weight determined by testing
● R is the average risk score of a software

○ Computed by taking the average risk of 763 top Java GitHub projects

9

Results
● http://galadriel.cs.utsa.edu:25666/

10

11

Reliability = .82

Observation of Practicality
● The biggest detriment to our approach (and every measurement model we

found) is that many process must be done manually:
○ Creating concrete patterns, linking bugs to abstract qualities, etc.

● We want to use deep learning to help automate these manual tasks

● However, much of these manual process directly deal with code which cannot
be learned over directly

● We will create word embeddings for code elements at which point we can
perform learning tasks on code directly

12

Neural Networks

Input
Hidden

Output

● Given an Input
● Matrix multiplication with Hidden layer

(weights)
● Non-linear activation function (tanh,

sigmoid, etc.)
● Predict Output
● Calculate loss by compare predicted

label to actual label
● Update weights using backpropagation

13

Word Embeddings
● Works very well for pictures since pixels have relevant values

● Text has no value to perform calculations with

● To solve this problem, we create real-valued vectors to represent each word
in a corpus called word embeddings which can be used for calculations

● Given a target word in a corpus, we perform word prediction by using words
surrounding the target, called context, to find relative semantic meaning
between the words in the corpus

● When visualized, good word embeddings will have words with similar
meaning grouped together 14

Word Embedding For Code
● We use the abstract syntax tree representation of code to make code

exploration and analysis easier

● We identify context based on asking the question “What other node types or
code elements are needed to determine the meaning or perform the task of
this node type?”

15

public boolean isAdmin(){
if(role == Role.ADMIN){

return true;
}
else{

return false;
}

}

16

17

Lowest Average Loss: 2.69
Perplexity: 14.80

18

Top 5 closest embeddings to “if” Top 5 closest embeddings to
“Thread”

Top 5 closest embeddings to
“DOUBLE”

19

Summary
● We proposed our framework for calculating a Reliability score on software by:

○ Collecting and creating bug patterns
○ Identifying those patterns in code
○ Calculating the reliability score based on the patterns identified

● We also explained our preliminary approach to mitigate the heavier manual
process of the framework by using deep learning on code

20

Future Work
● Refine bug testing as it is still fairly preliminary

● Refine our word embedding approach
○ Especially how methods are processed

● Use the embeddings to perform learning tasks:
○ Classifying bugs to abstract concepts
○ Creating concrete patterns from bug code snippet examples

21

