Predicting the End-to-End Tail Latency of
Containerized Microservices in the Cloud

Joy Rahman
Dept. of Computer Science
University of Texas at San Antonio
San Antonio, Texas-78249
Email: joy.rahman@utsa.edu

Abstract—Large-scale web services are increasingly adopting
cloud-native principles of application design to better utilize
the advantages of cloud computing. This involves building an
application using many loosely coupled service-specific compo-
nents (microservices) that communicate via lightweight APIs,
and utilizing containerization technologies to deploy, update, and
scale these microservices quickly and independently. However,
managing the end-to-end tail latency of requests flowing through
the microservices is challenging in the absence of accurate
performance models that can capture the complex interplay of
microservice workflows with cloud-induced performance vari-
ability and inter-service performance dependencies. In this paper,
we present performance characterization and modeling of con-
tainerized microservices in the cloud. Our modeling approach
aims at enabling cloud platforms to combine resource usage
metrics collected from multiple layers of the cloud environment,
and apply machine learning techniques to predict the end-to-end
tail latency of microservice workflows. We implemented and eval-
uated our modeling approach on NSF Cloud’s Chameleon testbed
using KVM for virtualization, Docker Engine for containerization
and Kubernetes for container orchestration. Experimental results
with an open-source microservices benchmark, Sock Shop, show
that our modeling approach achieves high prediction accuracy
even in the presence of multi-tenant performance interference.

I. INTRODUCTION

Large-scale web services (e.g Netflix, Microsoft Bing, Uber,
Spotify etc.) are increasingly adopting cloud-native principles
and design patterns such as microservices and containers to
better utilize the advantages of the cloud computing delivery
model, which includes greater agility in software deployment,
automated scalability, and portability across cloud environ-
ments [24, 30]. In a micro-services architecture, an appli-
cation is built using a combination of loosely coupled and
service-specific software containers that communicate using
APIs, instead of using a single, tightly coupled monolith of
code. This development methodology combined with recent
advancements in containerization technologies makes an ap-
plication easier to enhance, maintain, and scale. However, it
is challenging to manage the end-to-end tail latency (e.g 95"
percentile latency) of requests flowing through the microser-
vice architecture, which could result in poor user experiences
and loss of revenue [32, 46].

Containerized microservices deployed in a public cloud are
scaled automatically based on user-specified static thresholds

Palden Lama
Dept. of Computer Science
University of Texas at San Antonio
San Antonio, Texas-78249
Email: palden.lama@utsa.edu

for per-microservice resource utilization [1, 2, 6]. However,
this places a significant burden on application owners who
are concerned about the end-to-end tail latency (e.g 95" per-
centile latency) [28]. Setting appropriate resource utilization
thresholds on various microservices to meet the end-to-end
tail latency in such complex distributed system is difficult and
error-prone in the absence of accurate performance models.

There are many challenges in modeling the end-to-end tail
latency of containerized microservices. First, a microservice
architecture is characterized by complex request execution
paths spanning many microservices forming a directed acyclic
graph (DAG) with complex interactions across the service
topology [28, 29, 39]. Second, the tail latency is highly
sensitive to any variance in the system which could be re-
lated to application, OS or hardware [32]. Third, in a cloud
environment where microservices run as containers hosted on
a cluster of virtual machines (VMs), application performance
can degrade often in unpredictable ways [18, 21, 24, 44].

Traditionally, analytical models based on queuing theory
have been widely applied for performance prediction and
resource provisioning of monolithic (3-tier) applications [40,
41]. However, such techniques can become intractable when
dealing with the scale and complexity of microservice ar-
chitecture, and the presence of cloud-induced performance
variability. Furthermore, analytical modeling is a white-box
approach that often requires intrusive instrumentation of ap-
plication code for workload profiling and expert knowledge
about the application structure and data flow between various
components [25]. Such approach can be impractical from
a cloud provider’s perspective since customer applications
appear with limited visibility to the cloud providers.

There are black-box modeling approaches that relate ob-
servable resource usage metrics [36, 42] or resource allocation
metrics [43] with the performance of monolithic applications
hosted in virtualized computing environments. More recent
studies [19, 26] focused on runtime trace analysis tools
and simulation based approaches to analyze the performance
of microservice-based applications. However, none of these
works study the impact of cloud induced performance interfer-
ence on microservice-based applications, and the resulting in-
accuracies in performance modeling. In this paper, we observe
that the end-to-end tail latency of microservice workflows are

highly sensitivity to performance interference in the cloud.

Furthermore, we show that the tail latency of microservice

workflows can be accurately predicted even in the presence of

performance interference, with the help of machine learning
and multi-layer data collected from the cloud environment.

In particular, we make the following contributions.

1: We quantify the impact of resource utilization and perfor-
mance interference experienced by various microservices
on the end-to-end tail latency of various request workflows
in a web application. Since CPU is a major bottleneck
for most web applications, we use CPU utilization as a
resource metric in this paper, and focus on the performance
interference caused by the contention in shared processor
resources such as LLC (last level cache) and memory
bandwidth. However, our approach can be easily extended
to include other resource metrics.

2: We propose a modeling approach that combines multi-layer
data including container-level, VM level and a hardware
performance counter based metric, CPI (clock cycles per
instruction), to accurately predict end-to-end tail latency in
the presence of performance interference in the cloud.

3: We apply several machine learning based modeling tech-
niques, and compare their accuracy in predicting the end-
to-end performance for containerized microservices.

4: We demonstrate the feasibility of utilizing the proposed
performance models in making efficient resource scaling
decisions. For this purpose, we formulate resource scaling
of microservices as a constrained nonlinear optimization
problem, and solve it to calculate appropriate resource
utilization thresholds on various microservices, so that
they can be scaled efficiently to meet a performance SLO
(service level objective) target.

5. We implement and evaluate the proposed techniques using
a representative microservices benchmark, Sock Shop [14],
using the NSF Chameleon cloud [3] testbed. The Sock
Shop benchmark is containerized with Docker [35] and
deployed in a cluster of VMs managed by Kubernetes [8]
an open-source container orchestration engine.

The rest of this paper is organized as follows. Section II
provides the background on microservice archiecture. Related
work are discussed in Section III. Section IV describes the
testbed setup and benchmarks used. Section V presents the
performance characterization of containerized microservices.
Section VI provides the performance modeling approach.
Section VII discusses resource scaling optimization based on
the proposed models. Section VIII concludes the paper.

II. BACKGROUND ON MICROSERVICE ARCHITECTURE

Microservice architecture aims to overcome various limita-
tions of traditional monolithic architecture for software devel-
opment [10, 22]. Figure 1 illustrates the difference between
multi-tier monolithic architecture and microservice architec-
ture in the context of an e-commerce application that takes
orders from customers, verifies product catalogue, processes
payment and ships orders. In monolithic architecture, the web
application is divided into technology-specific tiers such as

==l 7

: v : Catalogue
' Business !
: Logic :

| Users | | Shipping | |Payment| | Cart ‘

Orders | | Lalrt—
-dh -db dh

(b) Microservices.

i Shared
Database

i

(a) Monolith.

Fig. 1: Monolithic vs microservice architecture.

a frontend web tier for serving web contents, an application
tier composed of numerous tightly coupled components for
implementing the entire business logic, and a shared database
tier for data persistence. A monolithic application is often
simple to design. However, in order to update one component,
the entire application has to be redeployed. Furthermore, each
component within a tier cannot be scaled independently based
on its resource requirements. On the other hand, microservice
architecture splits the application into many smaller self-
contained components, called microservices, that serve specific
business functions and communicate with each other via
lightweight language-agnostic APIs. Each microservice has
its own code and database without any shared component
with other services. This facilitates flexibility in application
deployment and enhanced scalability since each component
of an application can be updated and scaled independently. In
essence, microservice architecture is a variant of the Service-
Oriented Architecture (SOA) that emphasizes fine-grained
services and lightweightness.

III. RELATED WORK

Performance modeling and dynamic resource provisioning
of Internet applications has been an important research topic
for many years [31, 36, 37, 40, 41, 43, 45]. There are
traditional analytical modeling approaches based on queueing
theory [40, 41], and hybrid approaches that combine queueing
theory with machine learning techniques [38, 45]. Urgaonkar
et al. [41] designed a dynamic server provisioning technique
on multi-tier server clusters. The technique decomposes the
per-tier average delay targets to be certain percentages of
the end-to-end delay constraint. Singh et al. [38] applied k-
means clustering algorithm and a G=G=1 queuing model to
predict the server capacity for a given workload mix. Although
these approaches were effective for multi-tier monolithic ap-
plications, they can become intractable when dealing with
complex microservice architecture in a cloud environment.
The complexity introduced by having many moving parts
with complex interactions and the presence of cloud-induced
performance variability [21, 44] pose significant challenges
in modeling the system behavior, identifying critical resource
bottlenecks and managing them effectively.

Blackbox modeling techniques have been widely adopted in
cluster resource allocation and management [31, 36, 42, 43].

Orders Workflow

-db

Fig. 2: Workflow DAGs.

Carts Workflow

Cart-

Nguyen et al.[36] applied online profiling and polynomial
curve fitting to provide a black-box performance model of the
applications SLO violation rate for a given resource pressure.
Wajahat er al. [42] presented an application-agnostic, neural
network based auto-scaler for minimizing SLA violations of
diverse applications. Wang et al. [43] applied fuzzy model
predictive control and Lama et al. [31] proposed self-adaptive
neural fuzzy control techniques for dynamic resource man-
agement of monolithic cloud applications. However, these
studies do not address the modeling inaccuracies caused by
the performance interference in the cloud, and the complexity
introduced by microservice architecture.

A few studies have focused on managing the end-to-
end performance objectives of large-scale web services and
analyzing their complex performance behavior [27, 28, 39].
Guo et al. [27] highlighted how the complex interactions
between various components of large-scale web services not
only lead to sharp degradation in performance, but also trigger
cascading behaviors that result in wide-spread application
outages. Jalaparti et al. [28] presented Kwiken, a framework
that decomposes the problem of minimizing latency over
a general processing DAG in a large web service into a
manageable optimization over individual stages. Suresh et
al. [28] presented Wisp, a resource management framework
that applies a combination of techniques, including estimating
local workload models based on measurements of imme-
diate neighborhoods, distributed rate control and metadata
propagation to achieve end-to-end throughput and latency
objectives in Service-Oriented architectures. These approaches
are complimentary to our work as they focus on solutions that
need to be adopted at the application layer in the context
of cloud computing stack, and requires expert knowledge
about the application. On the other hand, our performance
modeling approach does not require intrusive instrumentation
of application code for profiling or expert knowledge about
the data flow between various components.

IV. PLATFORM
A. Experimental Testbed

We setup a cloud prototype testbed, which closely resembles
a real-world cloud platforms such as Google Kubernetes
Engine [6] and Amazon Elastic Container Services [2]. Our
testbed consists of a physical layer of bare metal servers, a
VM layer built on top of the physical layer and a container
layer built on top of VM layer.

Physical Servers. We used four bare metal servers leased on
NSF Chameleon Cloud[3] testbed. Each server was equipped
with dual socket Intel Xeon E5-2670 v3 Haswell processors
(each with 12 cores @ 2.3GHz) and 128 GiB of RAM. Each
server was connected to a Dell switch at 10Gbp, with 40Gbps
of bandwidth to the core network from each switch.

VMs. We setup 16 VMs on top of the bare metal servers by
using KVM for server virtualization. Each VM was configured
with four vCPUs, 8GB Ram and 30GB disk space.

Containers. We setup a 16 VM Kubernetes cluster for
container orchestration and management. Docker (version
18.03.1-ce) was used as the container run time engine on each
VM. Kubernetes pod networking was setup using Calico CNI
(Container Network Interface) network plugin [11]. We use the
term pod and container interchangeably in this paper, since we
use a one-container-per-Pod model, which is the most common
Kubernetes use case.

B. Workloads

For performance characterization, we used Sock Shop [14],
an open-source microservices benchmark that is particularly
tailored for container platforms. Sock Shop emulates an e-
commerce website as shown in Figure 1 with the specic aim of
aiding the demonstration and testing of existing microservice
and cloud-native technologies. Recent study suggests that Sock
shop closely reflects how typical microservices applications
are currently being developed and delivered into production,
as reported by practitioners and industry experts [17]. We used
the Locust tool [9] to generate user traffic for the Sock Shop
benchmark. The workload traffic is composed of a number of
concurrent clients that generate HTTP-based REST API calls
to Sock Shop. To create a controlled interference workload for
our experiments, we used the STREAM Memory Bandwidth
benchmark[33]. STREAM is a synthetic benchmark program
geared towards measuring memory bandwidth (in MB/s) cor-
responding to computation rate for simple vector kernels. We
run the benchmark inside a docker container and deploy it as
a batch job in kubernetes.

V. PERFORMANCE CHARACTERIZATION

One of the challenges that complicate performance char-
acterization of a microservice architecture is that request
execution workflows can form directed acyclic graph (DAG)
structures spanning across many microservices. As a result,
the end-to-end latency of a workflow is impacted by the
performance behavior of multiple microservices in a complex
way. We use the term workflow to represent application-
specific group of requests that are associated with a particular
API endpoint, which is usually in the form of an HTTP
URI For instance, in case of the Sock Shop benchmark
shown in Figure 1, the HTTP URIs for workflows involved
with processing orders are [base url: / GET / Orders] and
[base url: / POST / Orders]. The exact structure of DAG
for request workflows is often unknown, since it depends on
multiple factors such as the APIs invoked at each encountered
microservice, the supplied arguments, the content of caches, as

@ , —=- orders_worflow
E 300 /) —:- cart_worflow
oy |
2 |
i) N
T 200 i
[} \
= /
c PO
@ 100 4
a .~
£ Pl
Y]
o
0 T T :
0 25 50 75 100

CPU utilization (%)

(a) CPU utilization of orders microservice.

—== orders_worflow
1 —-- cart_worflow '\:’

]
1

w
o
o

/
/1

N
i

nN
o
o

[N
o
=]

L

\

95th percentile latency (ms)

o

0 25 50 75 100

CPU utilization (%)

(b) CPU utilization of cart microservice.

BRI 7 [TEL T ,
PUM Y —.- ey i

OMM /
i

NMM -

VR2}RE° | E~HEA~2£~ -E<ctF

M OR RM TR NWM

Tmr=3%§ ~4-—£BF

(c) CPU utilization of frontend microservice.

Fig. 3: Impact of CPU utilization on the tail latency of various workflows.

well as the use of load balancing along the service graph [39].
We used a visualization and monitoring tool, weavescope [16],
to map the DAG structure of orders and cart workflows as
shown in Figure 2.

A. End-to-end Tail Latency

First, we analyze the impact of CPU utilization of individual
microservices on the end-to-end tail latency of two different
workflows viz. orders and cart in the Sock Shop benchmark.
For this purpose, we run experiments with various workload
intensities by varying the number of concurrent clients in
the workload generator from 5 to 50, while setting the total
number of generated requests to be 50000. We also vary
the number of pods allocated to cart, orders and frontend
microservices to include various combination of scaling con-
figurations. The CPU utilization of a particular microservice
is measured as the average CPU utilization of all the pods
allocated to that microservice. As shown in Figures 3 (a),
(b) and (c) the end-to-end tail latency of various workflows
have a non-linear relationship with the CPU utilization of
individual microservices. We observe that the 95" percentile
latency of the two workflows increase significantly even at low
CPU utilization values of the orders and cart microservices.
On the other hand, only high CPU utilization values (>70%)
of the frontend microservice has significant impact on the
95!" percentile latency. For example, the tail latency of the
orders workflow reaches 200 ms at 49%, 57% and 106%
CPU utilizations of the orders, cart and frontend microservices
respectively.

B. Impact of Performance Interference

Next, we analyze the impact of performance interference in
a cloud environment on the multivariate relationship between
CPU utilization of various microservices and the end-to-end
tail latency of particular request workflows. For the sake of
clarity, we present our analysis using top four microservices
from the Sock Shop benchmark ranked according to their CPU
utilization values. To induce performance interference, we
colocate pods running the memory-intensive STREAM [33]
benchmark on the VMs that host the pods running cart and

frontend microservices respectively. The intensity of interfer-
ence is fixed by running four pods for each interfering work-
load. The workload intensities and the scaling configurations
for orders, cart and frontend microservices are varied similar
to the previous experiment. As shown in Figures 4 (a), (b)
and (c) the end-to-end tail latency of the orders workflow is
influenced by the CPU utilization of multiple microservices.
However, their multivariate relationship changes significantly
depending on the performance interference experienced by
various microservices. Furthermore, compared to the case
when there is no interference, the same range of end-to-end tail
latency is observed at much lower CPU utilization values in
the presence of interference. Similar results were obtained for
the cart workflow as shown in Figures 5 (a), (b) and (c). This
implies that the CPU utilization of microservices measured
at the pod level are insufficient in accurately predicting the
end-to-end tail latency of various workflows.

Figure 6 shows the distribution of the 95" percentile latency
of various workflows under three different scenarios, i.e with
interference on cart, interference on frontend and without
interference. The variation in the latency observed within each
case is mainly due to the varying workload intensities in
these experiments. On average the performance degradation
observed by orders and cart workflows due to interference
on cart microservice are 22% and 79% respectively. On the
other hand, the average performance degradation of the two
workflows due to interference on frontend microservice are
6% and 18% respectively. These results demonstrate the com-
plex interplay between performance interference, inter-service
performance dependency and the end-to-end tail latency of
various workflows.

VI. PERFORMANCE MODELING WITH MACHINE
LEARNING

In this section, we present our approach to address the
challenges of predicting the end-to-end tail latency of complex
workflows in a microservice architecture in the face of diverse
performance interference patterns. Our approach combines the
resource usage metrics at the container/pod level with VM
level resource usage and hardware performance counter values
to construct machine learning (ML) based performance models

