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Abstract—In this paper, we measure the relative accuracy of
malware detectors in the absence of ground truth regarding the
quality of malware detectors (i.e., the detection accuracy) or the
class of sample files, (i.e., malicious or benign). In particular,
we are interested in measuring the ordinal scale of malware
detectors in the absence of the ground truth of their actual
detection quality. To this end, we propose an algorithm to
estimate the relative accuracy of the malware detectors. Based
on synthetic data with known ground truth, we characterize
when the proposed algorithm leads to accurately estimating
the relative accuracy of the malware detectors. We show the
measured relative accuracy of real-world malware detectors using
our proposed algorithm based on a real dataset consisting of 10.7
million files and 62 malware detectors, obtained from VirusTotal.

Index Terms—Malware detection, security metrics, security
measurement, ground truth, estimation, statistical estimators.

I. INTRODUCTION

Measuring security metrics is a vital but challenging open
research problem that has not been well addressed. The major
problems in measuring security metrics are two-fold: (1) what
to measure, which questions how to define new, useful security
metrics; and (2) how to measure, which asks how to devise
new methods to measure security metrics. In this work, we are
interested in answering the latter question, how to measure a
security metric where the ground truth does not exist for the
detection accuracy of a malware detector as well as for the
class (i.e., malicious or benign) of the files.

When measuring the quality of malware detectors, many
methods have been used based on certain heuristics such
as using the labels of a few malware detectors as ground
truth [1, 2, 3]. These heuristic-based approaches are trou-
blesome because of the well-known fact that each malware
detector has a different quality of detection accuracy. Although
some methods have been proposed to answer how to measure
security metrics [4, 5], measuring the relative accuracy of
malware detectors has not been addressed in existing works.
In particular, this work is inspired by our prior work [4]
which measured the quality of malware detectors assuming
that a voting-based estimation of detection accuracy is true.
Unlike [4], this work aims to estimate the relative accuracy
of malware detectors, which are obtained without making the
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assumptions that were made in [4]. Although the relative accu-
racy of malware detectors is weaker than the absolute accuracy,
it is still useful in regards to comparing malware detectors.
Therefore, this paper aims at answering the following research
question: “How can we rank the accuracy of malware detectors
in the absence of ground truth?”

This work has the following key contributions: (i) This
study offers a method to formulate how to estimate the
relative accuracy of malware detectors. This method can be
used when one needs to choose one malware detector over
others; and (ii) The proposed algorithm measuring the relative
detection accuracy of a malware detector is validated based on
a real world malware dataset consisting of 62 detectors, given
synthetic data with known ground truth values.

The rest of the paper is organized as follows. Section II pro-
vides the overview of the related state-of-the-art approaches.
Section III presents a problem statement and our proposed
methodology to solve the given problem. Section IV describes
the experimental setup and results, with the discussion of key
findings. Section V concludes the paper and suggests future
research directions.

II. RELATED WORK

In practice, obtaining ground truth is highly challenging and
almost not feasible due to high noise, uncertain data, and/or
the inherent nature of imperfect estimation. For example,
when using machine learning techniques to train cyber defense
models, we need to know the ground truth labels of training
samples. For a small set of samples, we can use human experts
to grade them and derive their ground truth. However, even
in this case, the perfect evaluation is not guaranteed because
humans are also error-prone and can make mistakes due to
their inherent cognitive limitations. Accordingly, for a large
set of samples, it is obviously not feasible for human experts
to derive the ground truth. Therefore, it is true that many third-
party datasets (e.g., blacklisted websites [6, 7, 8, 9]) are not
necessarily trustworthy due to these inherent limitations.

Several studies have been conducted in order to investigate
the accuracy of malware detectors when there exists no ground
truth of their accuracy [4, 5, 10, 11]. These studies used
different assumptions in order to estimate the accuracy of
the malware detectors. Kantchelian et al. [5] used the naı̈ve
Bayesian method and treated the unknown ground truth labels
as hidden variables, while the Expectation-Maximization (EM)
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method [10, 11] is used to estimate the accuracy of malware
detectors using well-known metrics such as false-positive rate,
false-negative rate, or accuracy. In [5], the authors assumed the
homogeneity of false positives in all detectors, an independent
decision of each detector, and low false positives but high false
negatives assumed for all detectors, and so forth. However,
these assumptions should be removed in order to reflect real
world applications. Xu et al. [4] used a frequentist approach
to design a statistical metric estimator to measure the quality
metrics of malware detectors with only two of the four as-
sumptions made in [5]. All the above works [4, 5, 10, 11] make
certain assumptions. In contrast, the present paper investigates
the relative accuracy of malware detectors without making
those assumptions.

The paper falls into the study of security metrics, which is
an integral part of the Cybersecurity Dynamics framework [12,
13] and indeed one of the most fundamental open problems
that have yet to be adequately tackled [14]. Recent advance-
ment in security metrics includes [14, 15, 16, 17, 18, 19]. For
example, the effectiveness of firewalls and DMZs is studied in
[18] and the effectiveness of enforcing network-wide software
diversity is investigated in [17]. Orthogonal to security metrics
research are the first-principle modeling of cybersecurity from
a holistic perspective [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]
and cybersecurity data analytics [31, 32, 33, 34, 35].

III. PROBLEM STATEMENT AND METHODOLOGY

A. Definitions of Relative Accuracy of Malware Detectors

Suppose that there are m files, denoted by F1, . . . ,Fj, . . . ,Fm
and n malware detectors, denoted by D1, . . . ,Di, . . . ,Dn. The
input dataset is represented by a matrix V = (Vi j)1≤i≤n,1≤ j≤m,
which is defined where

Vi j =


1 if Di detects Fj as malicious,
0 if Di detects Fj as benign,
−1 if Di did not scan Fj.

Vector Vi = (Vi1, . . . ,Vi j, . . . ,Vim), where 1 ≤ i ≤ n, represents
the outcome of using detector Di to label m files.

With respect to a set of n detectors, the relative accuracy of
detector i, denoted by Ti for 1≤ i≤ n, is defined over interval
[0,1], where 0 means the minimum degree (i.e., a zero degree)
of relative accuracy while 1 indicates the maximum degree of
relative accuracy.

Definition 1: (Properties of relative accuracy) For a given
set of files and a fixed set of n detectors, the relative accuracy
of detector i, denoted by Ti for 1 ≤ i ≤ n, is defined based
on the labels assigned by the n detectors (including detector
i itself). For simplicity, we define Ti as a real number in the
range [0,1].

We stress that the relative accuracy metric does not measure
the true accuracy or trustworthiness of detectors. For example,
consider three detectors D1, D2, and D3, with respective true
accuracy, 90%, 80%, or 70%. In this work, our goal is not
to measure the accuracy of each detector. Instead, based on
the labels of files assigned by these three detectors, we are

more interested in knowing which detector is more accurate
than others, leading to generating the ranks of examined
detectors. Based on our proposed methodology, we obtain
their respective relative accuracy as T1 = 100%, T2 = 90%, and
T3 = 70%, which gives the performance of relative accuracy of
the detectors: D1 > D2 > D3. However, the relative accuracy
does not approximate the true accuracy. Moreover, when we
consider a set of files scanned by detectors, D1, D2, D3,
and D4, letting the true accuracy of D1-D3 remain the same
while the true accuracy of D4 is 95%, then the resulting
relative accuracy may be T1 = 80%, T2 = 60%, T3 = 50%, and
T4 = 100%. This leads to the relative accuracy of the detectors
being D4 > D1 > D2 > D3. This is because the detector with
the highest relative accuracy is always normalized to have a
relative accuracy of 100% and the relative accuracy is always
measured over a set of detectors.

B. Methodology
The basic underlying idea of estimating the relative accuracy

of malware detectors is to measure the similarity between each
pair of detectors. To do so, we iteratively create the relative
accuracy of the malware detectors, given that the initial relative
accuracy of each detector is set to 1, assuming that each
detector is equally accurate.

1) Similarity Matrix: To measure the relative accuracy of
detectors, the concept of a similarity matrix is introduced to
collectively represent the similarity between malware detectors
according to their decisions in labeling files as benign or
malicious. In this matrix, denoted by S = (Sik), the i-th row
corresponds to detector Di and the k-th column corresponds
to detector Dk, where 1 ≤ i,k ≤ n. Element Sik denotes the
similarity between detectors Di and Dk in terms of their
capabilities in detecting malware. Naturally, we require (i)
Sik = Ski because the similarity should be symmetric; and (ii)
Sii = 1 for any 1≤ i≤ n. Intuitively, the similarity between Di
and Dk, Sik, is defined by the ratio of the number of decisions
where Di and Dk agree with each other over the total number
of files scanned by both detectors, Di and Dk.

To clearly define Sik in a modular fashion, two auxiliary
matrices are defined: the agreement matrix, denoted by A =
(Aik)1≤i,k≤n, and the count matrix, denoted by C=(Ci j)1≤i,k≤n.
Intuitively, Aik is the number of files upon which detectors Di
and Dk give the same labels, namely

Aik = Aki =
m

∑
`=1

{
1 if Vi` =Vk`∧Vi` 6=−1∧Vk` 6=−1
0 if Vi` 6=Vk`∨Vi` =−1∨Vk` =−1.

and Cik is the number of files scanned by both detectors, Di
and Dk, namely

Cik =Cki =
m

∑
`=1

{
1 if Vi` 6=−1∧Vk` 6=−1,
0 if Vi` =−1∨Vk` =−1.

Note that both A and C are symmetric. Given matrices A and
C, a similarity matrix S is defined as:

Definition 2: (Similarity matrix) The similarity matrix S =
(Sik)1≤i,k≤n is defined as the ratio of labels that detectors Di

and Dk agree, namely Sik =
Aik
Cik

, implying that Sik is symmetric.
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2) Algorithm for Computing Relative Accuracy: Definition
1 specifies the properties that a good relative accuracy def-
inition should meet. Now we address a specific definition
to measure the relative accuracy that satisfies those desired
properties; the definition is shown in Algorithm 1.

Algorithm 1 Computing relative accuracy
Input: Similarity matrix Sn×n; tolerable error threshold ε

Output: Relative accuracy vector T = [T1,T2, . . . ,Tn]
T

1: δ ← 2ε

2: T← ([1,1, . . . ,1]1×n)
T

3: NextT← ([0,0, . . . ,0]1×n)
T

4: while δ > ε do
5: NextT← S×T
6: NextT← NextT/max(NextT)
7: δ ← ∑1≤i≤n |Ti−NextTi|
8: T← NextT
9: end while

10: Return T

The underlying idea of Algorithm 1 is as follows: The
relative accuracy vector T is recursively calculated from the
similarity matrix S. The algorithm halts when the error δ is
smaller than a threshold ε .

The similarity matrix S resembles a well-known correla-
tion matrix consisting of correlation coefficients between a
group of random variables. The major difference between
these two kinds of matrices is that similarities are in the
range of [0,1] while correlations are in the range of [−1,1].
The sample version of a correlation matrix is the base for
a statistical technique called principal component analysis
where the eigendecomposition of the sample correlation matrix
is used to find the dominating directions of variation in the
data. In a similar sense, we use the similarity matrix to rank
the relative accuracies of detectors. On the other hand, the
recursive computation of the relative accuracy vector T may
be reminiscent of a Markov Chain of n states. However,
the similarity matrix S is not a probability transition matrix
because the entries do not reflect probability.

IV. EXPERIMENTS AND RESULTS

In this section, we conduct experiments using a synthetic
dataset with known ground truth to evaluate the approach and
then use the approach to analyze a real dataset.

A. Experiments with Synthetic Data
Generating synthetic data. Three synthetic datasets of labels
are generated for one million samples per dataset: D1 contains
300,000 malicious files and 700,000 benign files; D2 contains
500,000 malicious files and 500,000 benign files; and D3
contains 700,000 malicious files and 300,000 benign files.
Using these three datasets allows us to see the impact of the
ratio between malicious and benign files.
Experimental setup. We consider 10 experiments where each
experiment uses a number of detectors characterized by a true-
positive rate (T P) and a true-negative rate (T N), while false-
positive rates (FP) and false-negative rates (FN) are used to

derive T P and T N, such as T P = 1− FN and T N = 1−
FP [14]. Moreover, accuracy is defined as TP+TN

TP+FP+TN+FN [14].
Experiments 1-5 aim to test a variety of situations with

various distributions of accuracies of malware detectors.

• Experiment 1 - Four sets of detectors of varying true
accuracy rates are simulated:

– 10 detectors with an accuracy range of 95% to 85%;
– 10 detectors with an accuracy range of 85% to 75%;
– 10 detectors with an accuracy range of 80% to 70%;
– 20 detectors with an accuracy range of 75% to 65%.

• Experiment 2 - Four sets of detectors of varying true
accuracy rates are simulated:

– 10 detectors with an accuracy range of 100% to 90%;
– 10 detectors with an accuracy range of 95% to 85%;
– 10 detectors with an accuracy range of 90% to 80%;
– 20 detectors with an accuracy range of 85% to 75%.

• Experiment 3 - The algorithm is tested with all 50
detectors that have a narrow range of accuracies (i.e.,
approximately the same detection capability):

– 50 detectors with an accuracy range of 100% to 90%.
• Experiment 4 - The algorithm is tested with poor detec-

tors that have their accuracies below 50%:
– 50 detectors with an accuracy range of 100% to 90%;
– 10 detectors with an accuracy range of 95% to 85%;
– 10 detectors with an accuracy range of 90% to 80%;
– 10 detectors with an accuracy range of 85% to 75%.
– 10 detectors with an accuracy range of 45% to 35%.

• Experiment 5 - The algorithm is tested with a higher
ratio of poor detectors, as compared with Experiment 4:

– 10 detectors with an accuracy range of 100% to 90%;
– 10 detectors with an accuracy range of 95% to 85%;
– 10 detectors with an accuracy range of 90% to 80%;
– 10 detectors with an accuracy range of 85% to 75%;
– 10 detectors with an accuracy range of 45% to 35%.

Experiments 6-10 are conducted to investigate the threshold
where the algorithm is able to diagnose ‘good’ detectors over
‘poor’ detectors as the ratio of poor detectors increases. In all
5 experiments, the good detectors have accuracies that range
from 100% to 90%, while the poor detectors have accuracies
that range from 45% to 35%.

• Experiment 6 - The algorithm is tested with 20% poor
detectors:

– 40 detectors with an accuracy range of 100% to 90%;
– 10 detectors with an accuracy range of 45% to 35%.

• Experiment 7 - The algorithm is tested with 40% poor
detectors:

– 30 detectors with an accuracy range of 100% to 90%;
– 20 detectors with an accuracy range of 45% to 35%.

• Experiment 8 - The algorithm is tested with 50% poor
detectors:

– 25 detectors with an accuracy range of 100% to 90%;
– 25 detectors with an accuracy range of 45% to 35%.
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(a) Exp. 1 (b) Exp. 2 (c) Exp. 3 (d) Exp. 4 (e) Exp. 5

(f) Exp. 6 (g) Exp. 7 (h) Exp. 8 (i) Exp. 9 (j) Exp. 10

Fig. 1. Experiment results with dataset D1: In each picture, the y-axis corresponds to the detectors in an experiment while the x-axis corresponds to the True
Accuracy (left-hand half) and Relative Accuracy (right-hand half) of the detectors in color scale.

(a) Exp. 1 (b) Exp. 2 (c) Exp. 3 (d) Exp. 4 (e) Exp. 5

(f) Exp. 6 (g) Exp. 7 (h) Exp. 8 (i) Exp. 9 (j) Exp. 10

Fig. 2. Experiment results with dataset D1: In each picture, the y-axis corresponds to the true accuracy and relative accuracy of each detector. The x-axis
counts the individual detectors.

• Experiment 9 - The algorithm is tested with 60% poor
detectors:

– 20 detectors with an accuracy range of 100% to 90%;
– 30 detectors with an accuracy range of 45% to 35%.

• Experiment 10 - The algorithm is tested with 80% poor
detectors:

– 10 detectors with an accuracy range of 100% to 90%;
– 40 detectors with an accuracy range of 45% to 35%.

Fig. 1 plots experimental results with D1. For each exper-
iment, we look into the true accuracy and relative accuracy
of each detector. We observe that except Exp. 10, the order of
the accuracies (e.g., detector 2 is more accurate than detector
3) is preserved by the relative accuracy (i.e., detector 2 has a
higher relative accuracy than detector 3). This does not hold
for Exp. 10 because 40 (out of the 50) detectors are ‘poor.’

Fig. 2 maps both the true accuracy and the relative accuracy
of each detector for the experiments in D1. Each experiment
shows that there is one detector whose relative accuracy is
100%, which is implied by Algorithm 1. We also observe
that the relative accuracy of a detector is not the same as
the accuracy of the detector; in contrast, it can deviate signif-

icantly. However, note that the slope of the relative accuracy
matches with the changes observed in the slope of the true
accuracy, with minor differences in the degree of the change.
This implies that recovering the true accuracy of each detector
should be possible, if a proper method is provided. Experiment
10 is the exception again, showing that the rating system
was overwhelmed by the ‘poor’ detectors which outranked
the ‘good’ by a factor of 4 to 1. Furthermore, Experiments 6
through 9 show that with similar graphs for true accuracy, the
difference in measurements between true accuracy and relative
accuracy increases as the level of uncertainty increases.

For D2 and D3, the results are almost identical to D1. The
changes in the file distribution changed the initial ordering, but
the results for comparing the true accuracy with the relative
accuracy are trivial, so we didn’t include them here.

Algorithm 1 provides useful and significant results whether
the (true) accuracy of detectors is continuously distributed
across a wide range (as in Experiments 1 and 2), distributed
across a narrow range (as in Experiment 3), or distributed
across a wide range in a discontinuous fashion (as in Experi-
ments 4 and 5). Experiments 6 through 10 show that through
all three datasets, Algorithm 1 provides reliable results up to
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the point where there are 4 poor detectors per good detector. At
this threshold, the poor detectors begin to be rated above the
good detectors due to the noise introduced by sheer numbers.

Summarizing the experiment results with synthetic datasets
D1-D3, we obtain the following insight:

Insight 1: Algorithm 1 is useful because it can compute the
relative accuracy, or relative ranking, of malware detectors as
long as the number of ‘poor’ detectors is not overwhelming.

B. Applying the approach to evaluate a real dataset

The dataset was collected from VirusTotal. It contains a
corpus of m≈ 10.7 million files, each of which was scanned
by up to n= 62 anti-malware detectors, but some files were not
scanned by every detector. Each detector labels a file it scanned
as malicious (“1”) or benign (“0”). The dataset is transformed
to matrix Vijn×m, from which we derive a similarity matrix S
and a relative accuracy vector T according to Algorithm 1.

TABLE I
THE DETECTOR NAME AND TRUST VALUE FROM THE PROCESSED DATA

FROM VIRUSTOTAL.

Detector Name Trust Detector Name Trust
BitDefender 100% Symantec 95.78%
Ad-Aware 99.85% CAT-QuickHeal 95.46%
McAfee 99.63% Panda 95.22%
GData 99.62% Emsisoft 95.22%

Kaspersky 99.48% Zillya 93.20%
AhnLab-V3 99.45% TotalDefense 92.80%

VIPRE 99.39% nProtect 92.64%
MicroWorld-eScan 99.38% Kingsoft 91.74%

Avast 99.37% Bkav 91.68%
AVG 99.34% Avira 89.93%
F-Pro 99.32% Jiangmin 88.99%

K7AntiVirus 99.30% TheHacker 88.33%
NANO-Antivirus 99.22% Tencent 86.53%

F-Secure 99.05% ViRobot 86.53%
McAfee-GW-Edition 99.04% ALYac 85.91%

DrWeb 98.98% Malwarebytes 79.80%
ESET-NOD32 98.78% SUPERAntiSpyware 77.63%

Sophos 98.63% ClamAV 77.47%
VBA32 98.45% Baidu-International 73.13%
Comodo 98.45% Qihoo-360 71.68%
Ikarus 98.44% CMC 70.72%

AVware 98.31% Zoner 70.17%
Fortinet 97.79% Norman 65.44%
Cyren 97.53% ByteHero 64.01%

TrendMicro 97.43% AegisLab 60.10%
Microsoft 97.27% Alibaba 47.14%

TrendMicro-HouseCall 97.03% Arcabit 32.09%
Antiy-AVL 96.87% AntiVir 5E-04%
Agnitum 96.73% Commtouch 5E-04%
K7GW 96.50% DrWebSE 3E-04%
Rising 95.81% TotalDefense2 2E-06%

Table I summarizes the relative accuracy of the 62 detectors.
We observe that the relative accuracy of 35 detectors is in
[1,0.95], 11 detectors in [0.85,0.95], 7 detectors in [0.7,0.8],
3 detectors in [0.6,0.7], 1 detector in the 0.4 range, 1 detector
in the 0.3 range, and 4 detectors at the order of magnitude
of 10−6. The extremely low relative accuracy of the last four
detectors can be attributed to the following: (i) these detectors
match poorly with the decisions of the other detectors; (ii)
these detectors provide monotonous detection, meaning that
they label all files either as 1 or 0; and (iii) these detectors
scanned fewer than 1% of the files. Therefore, these detectors
are correctly labeled as inaccurate.

(a) S (b) T

Fig. 3. Relative accuracy vector T and associated similarity matrix S.

Fig. 3 (a) shows the similarity matrix while Fig. 3 (b) shows
the relative accuracy of the detectors. The similarity matrix
provides a good visual intuition as to why several detectors
were rated low. The inherent symmetry is also observed. In
order to reach the steady state, we ran 8 iterations of the
algorithm to reach a resolution of ε = 10−9.

Fig. 4. Relative accuracy (y-axis) of the 62 detectors (x-axis) in the real-
world dataset. Note that true accuracies of the detectors are not known and
therefore not plotted.

Fig. 4 shows the relative accuracy of the 62 detectors in
the real-world data. Summarizing the preceding discussion,
we obtain the following insight:

Insight 2: A few detectors in the real-world dataset are
not really useful. In traditional n-out-of-K voting, these poor
detectors would be given equal weight votes with the good
detectors. With the ability to discern which detectors are more
reliable, more appropriate voting weights can be applied to the
appropriate detectors.

V. CONCLUSION AND FUTURE WORK

We formulated the problem of estimating the relative ac-
curacy of malware detectors in the absence of ground truth
and presented an algorithm to derive the relative accuracy.
We validated the proposed algorithm based on real-world
datasets from VirusTotal, given synthetic data with ground
truth. Through the extensive experimental study, we found that
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the proposed algorithm of estimating the relative accuracy of
malware detectors is capable of ranking the relative accuracies
of the 62 real-world detectors which scanned millions of files.
In particular, we identified 4 detectors that not only are useless,
but also may do more harm than good.

We plan to conduct the following future research: (1)
develop a theoretical evaluation framework that can be used
to judge under what environments the proposed algorithm
works or does not work; (2) characterize the co-variance and
correlation between the accuracy of detectors; (3) develop an
aggregation engine to incorporate detection labels of multiple
malware detectors; and (4) identify the key characteristics of
poor detectors in order to avoid them when aggregating the
labels of multiple detectors.
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