
2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2918226, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPTUING, VOL., NO., 1

Classification-based and Energy-Efficient
Dynamic Task Scheduling Scheme for

Virtualized Cloud Data Center
Avinab Marahattaa,b, Sandeep Pirbhulalc, Fa Zhangb, Reza M. Parizid, Kim-Kwang Raymond Chooe,∗,

Zhiyong Liub,∗

Abstract—The size and number of cloud data centers (CDCs) have grown rapidly with the increasing popularity of cloud computing
and high-performance computing. This has the unintended consequences of creating new challenges due to inefficient use of
resources and high energy consumption. Hence, this necessitates the need to maximize resource utilization and ensure energy
efficiency in CDCs. One viable approach to achieve energy efficiency and resource utilization in CDC is task scheduling. While several
task scheduling approaches have been proposed in the literature, there appears to be a lack of classification-based merging concept
for real-time tasks in these existing approaches. Thus, an energy-efficient dynamic scheduling scheme (EDS) of real-time tasks for
virtualized CDC is presented in this paper. In the scheduling scheme, the heterogeneous tasks and virtual machines are first classified
based on a historical scheduling record. Then, similar type of tasks are merged and scheduled to maximally utilize an operational state
of the host. In addition, energy efficiencies and optimal operating frequencies of heterogeneous physical hosts are employed to attain
energy preservation while creating and deleting the virtual machines. Experimental results show that, in comparison with existing
techniques, EDS significantly improves overall scheduling performance, achieves a higher CDC resource utilization, increases task
guarantee ratio, minimizes the mean response time, and reduces energy consumption.

Index Terms—Cloud data center, virtualization, energy efficiency, task scheduling, task merging, virtual machine.

F

1 INTRODUCTION

Cloud data centers (CDCs) are a collection of interconnected
and virtualized heterogeneous resources (including hosts,
storages, applications, networks, and services), which fa-
cilitate ubiquitous, on-request network access to (shared)
computing resources [1], [2], [3]. CDCs generally host large
number of physical hosts, for example hundreds of thou-
sands of physical hosts. The scale of such operations, such
as those related to the hosts and equipments, also incurs
significant energy costs [4], [5]. This clearly has environ-
mental implications. For example, CDCs are estimated to
contribute 2% of the overall carbon emission [6]. There are
also additional energy-related costs [7], which can have an
implication on the reliability of hosts’ performance [8]. In
other words, we are facing an environmentally unsustain-
able situation [6]. This necessitates the design of energy
consumption reduction or “green” CDCs.

Authors Affiliations:
aUniversity of Chinese Academy of Sciences, China
bHigh Performance Computer Research Center, Institute of Computing

Technology, Chinese Academy of Sciences, China
c CAS Key Laboratory of Human-Machine Intelligence -Synergy Systems,

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
China
d Department of Software Engineering and Game Development, Kennesaw

State University, Marietta, GA 30060, USA
e Department of Information Systems and Cyber Security, University of

Texas at San Antonio, San Antonio, TX 78249, USA
Authors E-mail: avinab.marahatta@ict.ac.cn, sandeep@siat.ac.cn,

zhangfa@ict.ac.cn, rparizi1@kennesaw.edu, raymond.choo@fulbrightmail.org,
zyliu@ict.ac.cn

∗ Corresponding authors.

In parallel to the excessive energy consumption, CDCs
also face other challenges such as (very) low resource
utilization. For example, it was estimated that completely
idle hosts consume approximately 50% additional energy
in comparison to fully utilized hosts [9]. In other words,
lower utilization of computing resources (estimated to be
between 10% and 50%) indicates the massive waste of
energy [10], [11]. Therefore, improving resource utilization
by decreasing the number of on-run hosts, for example
via dynamic arrangement of virtual machines (VMs) on a
host, is one potentially viable strategy to minimize energy
consumption [12]. In practice, most applications in CDCs
are heterogeneous submitted dynamically by customers,
with defined deadlines. In other words, we need to have
sufficient number of active hosts in the CDC at any time
to execute incoming or upcoming tasks successfully prior
to their deadlines. Failing would affect energy consumption
and violate the Quality of Service (QoS), which has signifi-
cant financial and reputation implications.

In this paper, we design an energy-efficient dynamic
scheduling scheme (EDS), to achieve energy-efficiency, and
optimize task guarantee ratio, mean response time, and
resource utilization for CDCs. More precisely in our EDS,
tasks are classified using task classification method and
then mapped to the most suitable VMs based on the task’s
requirement and the host’s capacity. EDS uses task classi-
fication based on Bayes classifier and historical scheduling
record (HSR), which allow one to find both task type and
VM type. The task merging strategy is developed to merge
similar type of tasks and schedule the most suitable VM
until the resource condition is satisfied. Therefore, the sched-

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2918226, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPTUING, VOL., NO., 2

uler can dynamically scale up and consolidate the resources
of CDC, according to resource requirement.

A summary of our contributions in this paper is as
follows:

• The design of a dynamic task scheduling scheme
with resource provisioning in the context of virtu-
alized CDC.

• The design of a task classification method to classify
tasks and map them to the most suitable VM, in order
to minimize mean response time.

• The design of a task merging strategy to merge
similar type of tasks, when are then scheduled in the
same physical host to maximize utilization ratio.

• The design of policies to create, migrate and delete
VMs dynamically to adjust the scale of CDC and
satisfy real-time requirements.

In the next two sections, we will present related liter-
ature and relevant mathematical background materials. In
Sections 4 and 5, we present our proposed approach and
describe our evaluation of the proposed approached. Specif-
ically, the proposed approach is simulated using CloudSim
toolkit, and we benchmark the performance of the proposed
approach with existing schemes, in terms of task guarantee
ratio, resource utilization, total energy consumption, and
mean response time. Section 6 presents the conclusion.

2 RELATED WORK

Topics relating to minimizing/ optimizing energy consump-
tion and scheduling for CDCs are active research areas,
since the late 2000’s [13], [14], [15]. For example, there have
been extensive research efforts on designing energy efficient
scheduling approaches, such as virtualization-based energy-
efficient approaches and dynamic voltage and frequency
scaling (DVFS) enabled approaches, for both homogeneous
and heterogeneous environments [16], [17], [18]. The survey
of energy efficient strategies for data centers presented in
[17], for example, classified existing research efforts into
those focusing on operating system, hardware, data center
and virtualization. A multi-dimensional partition model
based on VM placement technique was proposed in [19]. In
a similar work, a greedy algorithm was proposed to deal
with quadratic assignment and bin packing problems to
improve utilization of resources by reducing the number of
active hosts [20].

Energy-aware Resource Allocation Method (EnReal),
proposed in [21], focuses on VMs’ dynamic deployment for
scientific workflow executions. The authors proposed an en-
ergy consumption model to study cloud application require-
ments, and an energy-aware resource allocation method for
VM allocation; thus, supporting scientific workflow execu-
tion based on their energy consumption model.

A balanced VM Scheduling method for energy-
performance trade-offs in cyber-physical cloud system is
presented in [22]. In this particular work, a joint optimiza-
tion model for energy consumption and performance degra-
dation of VM migration for cyber-physical cloud systems
was formulated. Using the model, the authors designed
a corresponding VM scheduling method for trade-offs be-
tween energy and performance to achieve both energy
saving and performance degradation mitigation.

Several algorithms have been proposed for VM dynamic
consolidation in CDCs, in order to optimize the number
of hosts by consolidating VMs dynamically and powering
off idle hosts to decrease additional energy consumption
[23], [24], [25]. The main objective of these algorithms is
mainly to improve the utilization of computing resources
and reduction of energy consumption under existing ser-
vice level agreement (SLA) constraints. Overloading host
detection, power and SLA-aware VM selection, and two-
phase VM placement algorithms are developed using an
iterative weighted linear regression method to determine
two utilization thresholds and avoid performance degrada-
tion [24]. These algorithms can be utilized for the effective
placement of new VMs, where the selected VMs can be
further processed for consolidation. Similarly, an enhancing
energy-efficient and QoS dynamic virtual machine consoli-
dation (EQVC) method is proposed in [25], which consists
of four algorithms that correspond to different stages in
VM consolidation. Based on their method, redundant VMs
from the hosts are selected, and then they are migrated to
other hosts before they get overloaded. In this work, the
host-model with adaptive reserved resources were further
introduced to prevent re-overload of hosts, guaranteeing
QoS requirements.

A parameter-based VM consolidation solution is pro-
posed in [26], which aims to mitigate issues with
reservation-based and demand-based solutions. This
parameter-based VM consolidation exploits the range be-
tween the demand-based and reservation-based ways of
finding VM to host allocations that strike a delicate balance
according to cloud providers’ goals. In another work, a self-
adaptive approach, called SAVE, is proposed by [27]. This
approach makes the decision of the assignment and migra-
tion of VMs by using probabilistic processes that exclusively
use local information.

A workload prediction-based reconfiguration algorithm
is proposed to allocate VMs and hosts dynamically [28].
Similarly, a scheduling algorithm is proposed in [29] to
select the most suitable physical host to a VM, based on the
future power consumption’s forecast. An online scheduling
system is also developed by [30] for distributed computing
platforms to minimize the energy consumption.

The brownout enabled system considering application
components is presented in [31], which are either mandatory
or optional. The authors consider component-level control
in the system that can also be applied to container or micro
services architecture. In this work, they proposed an algo-
rithm to determine brownout time and reduced utilization
of host. Their results showed that the application utilization
and total energy consumption could be reduced.

In another work, a utilization-based migration algorithm
is proposed to minimize the energy consumption of host by
decreasing the migrations [32]. The authors developed a per-
formance function for utilization-based migration scheme
to optimize the VM placement, which, in turn, consolidates
VMs to surpass the energy efficiency and guarantee the QoS.
Experimental results showed about 10% of hosts has low
utilizations.

A multi-objective dynamic scheduling system is pro-
posed to minimize the energy consumption [30]. A real-time
system that combines execution time and energy consump-

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2918226, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPTUING, VOL., NO., 3

tion to execute task-based applications on cloud computing
platforms based on energy performance important factor. A
prototype of scheduler has been implemented and tested
with real task-based COMPSs applications. The system is
evaluated with different kind of DAG and size instances
which provides a better solution.

Energy-aware resource provisioning mechanism is pro-
posed in [33] for cloud data centers, which are capable
of serving real-time periodic tasks following the Software
as Service model. The three-tier energy-aware hierarchical
scheduling approach is presented, where the scheduler of
the guest OS constitutes the first tier, the placer component
of the hypervisor located on top of servers forms the sec-
ond tier, and the third tier is a server-level scheduler that
allocates the VCPUs onto physical CPUs (PCPUs)within
each multi-core server. Similarly, an online energy-aware re-
source provisioning algorithm (EAICA) for real-time cloud
services is proposed in [34] to reduce the deadline miss
ratio for real-time cloud services. The proposed provisioning
framework not only considers the energy consumption of
servers but it also takes the energy consumption of the
communication network into account, to provide a holis-
tic solution. EAICA is inspired from a swarm intelligence
technique based on the Imperialist Competitive Algorithm
(ICA).

A migration technique is used to move VMs from un-
derutilized hosts to utilized hosts and makes under-utilized
hosts idle; then idle servers get powered off [35], [36], [37].
From a critical point of view, migration techniques could
bring delay with extra energy consumption. Maximum
(rate) Utilization (MaxUtil) has compared two consolidation
approaches which added migration techniques to former
approaches aiming at maximizing resource utilization [38].
In MaxUtil’s system, neither adaptive nor predictive tech-
niques have been proposed. A power utility based energy-
aware scheduling (EAS) algorithm is proposed in [39] to
reduce the energy consume by workflow. The proposed
EAS algorithm covered two sub-algorithms named as task
merging algorithm and task mapping algorithm. First, all
tasks (merged and non-merged task) are mapped to an
optimal VM-type based on the power utility concept; then
second, two tasks from task sequence are merged as one.

An algorithm based on Dynamic Voltage and Frequency
Scaling (DVFS) technology has been proposed to reduce the
amount of energy consumed by parallel jobs [40]. This algo-
rithm widens the non-critical task’s execution time and re-
duces energy cost by lowering the frequency and voltage of
processor. However, the given algorithm does not examine
parallel scheduling operation for other resource demands
in addition to the CPU. An energy-aware scheduling for
real-time tasks based on cooperative two-tier strategy was
also proposed by [41], which aimed to be beneficial to both
cloud users and their service providers. Similarly, a new
task scheduler for cloud computing has been proposed in
[42] by focusing on dependency between tasks and aiming
to achieve energy savings. A cloud-based energy consump-
tion model was presented in [43] to improve the energy
efficiency based on a statistical method.

3 PROBLEM FORMULATION AND MODELING

This section formulates a complete scheduling model for
CDC to define the system model, resource model, task
model, energy consumption model, optimization problems
and constraints, task and virtual machine mark model, task
merging model and migration model. Table 1 shows the key
terms and their descriptions, which have been used in the
rest of the paper.

3.1 System Model

The scheduler consists of task observer, historical schedul-
ing record (HSR), VMs data, resource monitor, and resource
allocator. When the user submit tasks, the tasks join the
queue of the entire system in descending order according
to deadlines [30]. Upon the arrival of a task in scheduling
process, the task observer classifies the task and determines
the types of VM. The complete task classification process
is given in Algorithm 1 (Section 4), which is based on
Bayes classifier. A merging queue is generated when the
task observer finalizes the task types and VM types from the
HSR. In case of no similarity, new task types and VM types
are created. If the VMs show any inability to satisfy schedul-
ing requirements, such as deadline, resource requirements
(CPU, RAM, Network Bandwidth, and Disk Storage), the
resource allocator will scale up resources. The resource mon-
itor checks the status of hosts in terms of capability to see
whether it can accommodate the first and second task of the
same type or not. The task merger prefers the completion of
merging similar types of tasks together based on satisfactory
conditions including deadline, resource requirements, and
energy optimization until the same type of tasks are all
processed in the merging queue. Furthermore, the hosts
report their execution status of scheduling a task and its
resource utilization to the scheduler directly. The resource
allocator and resource monitor manage the status of all the
physical hosts in CDC. In addition, if the host is under-
loaded, it may lead to having some VMs stay idle for a
long period of time. In this scenario, the resource allocator
decides which VMs should be migrated to other hosts to
boost resource utilization by scaling down resources. The
whole system diagram is shown in Fig. 1.

3.2 Resource Model

A CDC consists of unlimited set of hosts
H = {H1, H2, · · ·, Hi}, providing the physical
infrastructure for creating virtualized resources
to satisfy user’s requirements. An active host set
Hactive = {Hactive

1 , Hactive
2 , · · ·, Hactive

i };Hactive
i ⊆ Hi

is characterized by Hi = ((fi, ϑi), ci,mi),
where(fi, ϑi) = {(f1i , ϑi1), · · ·, (fmaxi , ϑimax)} is discrete
pairs of frequency and voltage of Hi, ci represents the
CPU capability, mi represents the memory capacity, which
are computed. A set of VM on Hi can be modeled as
Vij = {V τj , V

ϕ
j }, where V τj represents VM types defined in

Section 3.6, and V ϕj is VM requirement which is modeled
as V ϕj = {V pj , V mj , V nj , V

s
j }, where V pj , V

m
j , V nj and V sj

represent the parameters of processor, memory, network
bandwidth and disk storage of VM, respectively.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2918226, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPTUING, VOL., NO., 4

TABLE 1: Key terms and descriptions

Terms Descriptions
H The set of hosts H = {H1, H2, · · ·, Hi}
Hactive The set of active hosts Hactive = {Hactive

1 , Hactive
2 , · · ·, Hactive

i }
Hoff The set of powered off hosts Hoff = {Hoff

1 , Hoff
2 , · · ·, Hoff

i }
HIdle The set of idle hosts HIdle = {HIdle

1 , HIdle
2 , · · ·, HIdle

i }
V The set of virtual machine V = {V1, V2, · · ·, Vj}
V ϕj Virtual machine resource requirement V ϕj = {V pj , V

m
j , V nj , V

s
j }

T- The set of tasks T- = {T-1,T-2,T-3, · · ·,T-k}
T-ϕk Resource requirement for task T-k to execute successfully T-ϕk = {T-pk,T-

m
k ,T-

n
k ,T-

s
k}

tak, t
l
k, t

d
k Task arrival time, task work volume, task deadline

Ptotal Total energy consume by the host
ϑdi Supply voltage of hosts Hi
fdi Frequency of Hi
Pstatic Static power
Pdynamic Dynamic power
Etotali Total energy consumption
Sti Status of running host Hi at time t
tsi , tfi Start time, Finish time of host Hi
Υi Power ratio for the idle host HIdle

i
fmaxi Hi’s maximal frequency
Pmaxi Maximum power consumed by Hi
αi The proportionality coefficient of Hi
tek Execution time of task T-k at time t
ξ Computation size of the task T-k having fdi of Hi
foi Optimal frequency of Hi
RPf Ratio of power frequency
HT- Historical task set that is extracted from HSR
Hζ

T- Historical task type count

P (Hζ

T-) Probability of task type count
T-τk Task T-k of type τ
V τj Virtual machine Vj of type τ
mn Distance from one task to another task of same type.
tIdle Threshold time for idle virtual machines
tIdleVij

Idle time of virtual machine Vj running on host Hi

 Return Information

Return Results

Reject Task

Task Queue

VMs

Data HSR

Task

Observer

Ŧ1
1

Ŧ2
4

Ŧ3
3

Ŧ4
1

Ŧ𝑘
𝜏

Ŧ𝑘+𝑚1

𝜏

Ŧ𝑘+𝑚𝑛

𝜏

Ŧ𝑘
𝜏

 Ŧ𝑘
𝜏′

Ŧ𝑘
𝜏′′

Resource

Monitor

Resource

Allocator

Merging Queue
Merger

Dynamic Task Scheduler

Create VMs Hosts

𝑉1j

𝑉11

𝑉2j

𝑉21

𝑉ij

𝑉i1

𝐻1

𝐻i

𝐻2

Users

Fig. 1: System diagram

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2918226, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPTUING, VOL., NO., 5

3.3 Task Model
The task is a medium or container that expresses or holds
requirements of users. It can be observed that there are
primarily two types of task. The first one is a computing
task which requires high CPU and low memory, and the
second task that needs low CPU and high memory. Here,
we have defined a set of task as T- = {T-1,T-2,T-3, · · ·,T-k}
which includes a set of parameter T-ϕk = {T-pk,T-

m
k ,T-

n
k ,T-

s
k},

where T-pk, T-mk , T-nk and T-sk represent the processing capacity,
primary memory, network bandwidth and disk storage,
respectively, and they are needed to execute a given task set.
Similarly, HT-, T-τk , T-ζk represent the historical task record, task
type and type count, respectively. In CDC environments,
service providers get independent real-time tasks submitted
by end-user in random time frame, and then the system
accepts the service without understanding the complexity
of computing infrastructure. An independent real-time task
can be modeled as T-k = (tak, t

l
k, t

d
k), where tak, t

l
k and tdk

represent the task arrival time, task work volume (i.e., total
computing units), and task deadline, respectively. Cloud
providers specify task parameters when users submit their
tasks to them.

3.4 Energy Consumption Model
Generally, there are several components that consume en-
ergy, including hosts, electrical and network components,
cooling system, storage devices. The main cause of energy
consumption in a CDC is hosts [23], which mainly are
determined by CPU, RAM, and disk storage. The energy
consumed by Hi is categorized into static power (Pstatic)
and dynamic power (Pdynamic), where idle host consumes
approximately 70% of the energy consumed by the host
running at the full CPU speed [23]. The total consumed
power is the summation of both static and dynamic powers
as shown below.

Ptotal = Pstatic + Pdynamic (1)

This paper mainly focuses on the dynamic power, Pdynamic
of CPU like [8], which is directly proportional to supply
voltage squared (ϑdi)

2 and its frequency fdi . Let αi be a
coefficient of proportionality, Pdynamic of Hi which can be
presented as follows, where ϑdi and fdi is proportional to the
Pdynamic [23].

Pdynamic = αi · (ϑdi)2 · fdi = αi · (fdi)3 (2)

Let, Υi be the power ratio for the idle host HIdle
i , fmaxi is

Hi ’s maximal frequency and Pmaxi is the maximum power
consumed by Hi. The proportionality coefficient αi of Hi

can be computed as

αi =
(1− Υi) · Pmaxi

(fmaxi)3
(3)

The dynamic power Pdynamic can be computed from
equations (2) and (3) as follows:

Pdynamic =
(1− Υi) · Pmaxi

(fmaxi)3
· (fdi)3 (4)

So, the power of Hi can be expressed as

Pi = Pstatic+Pdynamic = Υi·Pmaxi ·Sti+
(1− Υi) · Pmaxi

(fmaxi)3
·(fdi)3

(5)

where, Sti ⊆ (1, 0) indicates the status of running Hi at t,
where Sti is 1 if Hi is active, and is 0, otherwise at time t.
The total energy consumption Etotali of Hi from start time
tsi to finish time tfi can be approximated as follows.

Etotali =

∫ tfi

tsi

(Υi ·Pmaxi ·Sti+
(1− Υi) · Pmaxi

(fmaxi)3
·(fdi)3)dt (6)

Therefore, the total energy consumption of physical hosts
can be determined as follows.

Etotal =
n∑
i=1

Etotali (7)

3.5 Optimization Problems and Constraints
Let tskij and tfkij of T-k be the start time and finish time on Vij
of Hi, and tek be the T-k execution time, then the finish time
tfkij of T-k on Vijk of Hi can be calculated as follows.

tfkij = tskij + tek (8)

The parameter Xkij is used to represent the mapping rela-
tion between T-k and Vj on Hi. The assignment variable Xkij

is 1 when T-k is scheduled to Vj , otherwise, Xkij is 0. This is
formally represented as follows.

Xkij =

{
1, if T-k assigned to Vij
0, Otherwise.

The optimization problem can be formulated with
aforementioned analysis as:

1) Maximum Guarantee Ratio =
m∑
k=1

n∑
i=1

|Vij |∑
j=1

Xkij

m

2) Minimum Total energy Consumption=
n∑
i=1

∫ tfi
tsi
(Υi · Pmaxi · Sti +

(1−Υi)·Pmax
i

(fmax
i)3

· (fdi)
3
)dt

3) Minimum Response Time= (Waiting Time + Execution
Time + Migration Time)
4) Maximum Resource Utilization =

(
∑|T-|

k=1

∑|Hactive
i |

i=1

∑|Vj |
j=1 t

l
k·Xkij∑|Hactive

i
|

i=1 Ci·(tfi)−tsi
)

(9)

3.5.1 Constraints
(a) (fdi , ϑi

d) ⊆ (fi, ϑi), ∀ Hi ⊆ H
(b) ∀T-τk ⊆ T-k, ∀T-k ⊆ T-
(c) Xkij = 1, 0,∀VijΥi

⊆ Vj ,∀Hi ⊆ H
(d)

∑m
k=1

∑n
i=1

∑|Vij |
j=1 Xkij ≤ 1,∀T-k ⊆ T-

(e) tfkij ≤ tdk
Here, we consider four optimization objectives to mini-

mize the total energy consumption and the mean response
time, while maximizing the task guarantee ratio and the
utilization ratio.

3.5.2 Energy Optimization
Suppose, ξ is the computation size of the task T-k having
utilization of frequency fdi of the host Hi. Then, the execu-
tion time tek can be calculated as the ratio of ξ and fdi , i.e.,
tek = ξ/fdi . Thus, Etotali of Hi can be expressed as follow.

Etotali = Υi ·Pmaxi · ξ
fdi

+
(1− Υi) · Pmaxi

(fmaxi)3
· (fdi)3 ·

ξ

fdi
(10)

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2918226, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPTUING, VOL., NO., 6

For optimization,

−Υi · Pmaxi · ξ

(fdi)
2
+ 2 · (1− Υi) · P

max
i

(fmaxi)3
· fdi · ξ = 0 (11)

Based on the above equations, the optimal frequency of Hi

can be calculated as

fdi = 3

√
Υi

2.(1− Υi)
(fmaxi)3 (12)

Optimal frequency (foi) of Hi can execute in set of discrete
frequency, i.e., fdi ⊆ fi = {f11 , f22 , · · ·, fmaxi }, which can
be defined with maximum power Pmaxi in the following
manner.
foi = f1i , if fdi ≤ f1i ,
foi = |fdi |, if f1i ≤ fdi ≤ fmaxi , where |fdi | represents
the frequency that is more than foi and nearest of fmaxi ,
foi = fmaxi , if fdi ≥ fmaxi .
The ratio of power frequency (RPf) can be computed as
below.

RPf =
foi
Ei

=
foi

Υi · Pmaxi +
((1−Υi)·Pmax

i)

(fmax
i)3 · (foi)3

(13)

The observed scenario indicates that the larger RPf of
host denotes the higher energy efficiency in which case the
system schedules to execute the real-time heterogeneous
tasks when its workload decreases. This, in turn, results in
powering off the host with lower RPf firstly.

3.6 Task and Virtual Machine Mark Model
The task and virtual machine mark model has two oper-
ations, i.e., categorizing randomly arriving tasks to define
the best VM types for mapping with the most suitable VMs
[44] [45], and obtaining historical data set from HSR to
classify the tasks, and generating VM types. Let HT- be the
historical task set that is extracted from HSR in CDC. Let
Hζ

T- represents the historical task type count, then the ratio
P (Hζ

T-) is given as

P (Hζ

T-) =
|Hζ

T- |
|HT-|

(14)

Based on our resource model and task model, the matching
degree P (T-ϕk |V

ϕ
j) is calculated as

P (T-ϕk |V
ϕ
j) =

{
(V ϕj /T-ϕk)

2, If(T-ϕk > V ϕj)

(V ϕmax − V
ϕ
j + T-ϕk)/V

ϕ
max, Otherwise

(15)
where V ϕmax = .maxτ⊆UV

ϕ
τ .

For us suppose that V 1
j = 12, V 1

τ = 8, V 1
max = 100, and

T-ϕk = 10.
According to equation 15,

P (T-1k|V 1
j) = (V 1

max − V 1
j + T-1k)/V

1
max = 0.98

P (T-1k|V 1
τ) = (V 1

τ /V
1
max)

2 = 0.64
P (T-1k|V 1

max) = (V 1
max − V 1

max + T-1k)/V
1
max = 0.1

We can see in the above outcome, 0.98 > 0.64 > 0.1.
Note that if P (T-ϕk |V

ϕ
j) = 1, it means we have a perfect

match. Thus, the result is that T-1k has a better match with

Ŧ𝑘
τ Ŧ𝑘+𝑚1

τ Ŧ𝑘+𝑚2

τ Ŧ𝑘+𝑚𝑛

τ
 …

Fig. 2: Task series of same task types

V 1
j , rather than V 1

τ and V 1
max. By using the Bayes Classifier

[46], we can calculate the probability of T-k belonging to T-τk ,

P (T-ϕk
′
|V ϕj

′
) = P (T-pk|V

p
j)P (T-

m
k |V mj) (16)

Then, the decision function of T-k is

{(j
′
, k

′
) = arg max P (T-τk

′
|P (T-ϕk

′
)} (17)

3.7 Task Merging Model

We define two tasks sequence, the same type T-τk , and T-τk+mn

the same VM types. Here, k represents the sequence number
of task, and m = {m1,m2, · · ·,mn} represents the queue
length from one task to another task of the same type, which
is not necessarily has to be equal. The task series of the same
task type is given as T-τk, T-τk+m1

, T-τk+m2
, · · ·, T-τk+mn

, as shown
in Fig. 2.

The system keeps all tasks in merging queue which were
generated by the task observer. The task observer categories
the task based on HSR, then it maps them with the most
suitable VM. The merging queue is generated by the task
observer with task types and VM types. Merging queue is
sorted with the decreasing order of deadline.

Let tek, tek+m1
, tek+m2

, · · · be the execution time of task
series of tasks of the same type, as shown in Fig. 3. When
two tasks T-1k and T-1k+m1

get merged, then the execution time
of merged tasks T-

′

k is given as T-ek = T-ek+m1
. The deadline of

task T-
′

k will be tdk because tasks T-1k must be finished before
the deadline tdk.

Example. Majority of the applications in cloud environ-
ments are dynamically submitted by end users and are spec-
ified with deadlines to ensure their timeliness requirements
in many domains, including scientific visualization, real-
time signal processing and so forth . Suppose, T-1k, T-1k+m1

,
T-1k+m2

, · · · are the task series of task type 1 from Merging
Queue (MQ) and V 1

j , V 1
j+n1

, V 1
j+n2

, · · · are the VM series of
the same type. The deadline of T-dk is very near because MQ
is sorted with decreasing order of deadline. First, if T-1k can be
schedule to V 1

j with the deadline tdk, it checks the same task
type successor T-1k+m1

. If T-1k + T-1k+m1
can finish its execution

before tdk, it checks for another successor of the same type
T-1k+m2

. If T-1k + T-1k+m1
+ T-1k+m2

is possible to be scheduled
within tdk, the process continues until the same task type
finishes. If T-1k + T-1k+m1

cannot be finished before tdk, it scales
up resources and schedule. If T-1k can not be scheduled within
tdk, it scales up resources and check whether the scheduling
is possible or not, if it is possible, it performs the scheduling,
otherwise, it rejects the tasks.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2918226, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPTUING, VOL., NO., 7

Ŧ𝑘
1 Ŧ𝑘+𝑚1

1 Ŧ𝑘
1′

Ŧ𝑘
1′ Ŧ𝑘+𝑚2

1 Ŧ𝑘
1′′

Ŧ𝑘
1′′.. Ŧ𝑘+𝑚𝑛

1 Ŧ𝑘
1′′…

Fig. 3: The process of task merging

3.8 Migration Model
Migration is widely used in CDCs to optimize resource
utilization at the host level for cloud resource management
[45]. Basically there are two types of migrations, offline
migration: it refers to moving a suspended VM from one
host, and live migration: it refers to moving a running VM
from one host to another.

In this paper, the live migration is solely considered
due to two main reasons: firstly, it is more efficient from
a performance point of view as it is able to transfer a VM
between hosts with a close to zero downtime [47]. Secondly,
it is the most adopted VM migration type in modern VM
managers. The length of a live migration depends on the
total CPU size, memory size, disk storage used by VM, and
the available network bandwidth. During live migration, the
CPU state context of the VMs are switched from the source
host to destination host. As a result, there will be small
data to be transferred, and represents the lowest limit for
minimizing the migration time. Similarly, the VMs memory
state also needs to be transferred to the destination host.
This information may be greater than the CPU state, which
includes the memory state of guest OS, and all the running
processes within the VM.

Let f thi be the threshold frequency of hosts. If the host’s
resources are utilized to a very low extend (frequency of
host (fdi) is less than or equal to threshold frequency (f thi)
and greater than optimum frequency foi , i.e., foi < fdi ≤
f thi), then a migration mechanism can be used to migrate
running virtual machine from less utilized hosts to high
utilized hosts (frequency of host (fdi) is greater than or
equal to threshold frequency (f thi) and less then or equal
to maximum frequency (fmaxi), i.e., f thi < fdi ≤ fmaxi).

The VM migration time is very important factor for en-
ergy dissipation. Therefore, time must be considered before
taking any migration-related decision. The total migration

Migration Time

Performance Impact

Timeline

R
es

p
o

n
se

 T
im

e
(m

s)

Fig. 4: The migration cost model

time, depends on the number of VMs to be migrated, and
the size of VMs. However, the total number of VMs to be
migrated, and the size of each VM cannot be known in
advance except in a probabilistic sense [48]. The time cost
of migrating of a single VM can be expressed in terms of the
statistics of the CPU content size, RAM size, and storage size
of this VM, as well as the available bandwidth at the time
of migration. It is important to stress that the RAM size is
the main parameter that affects the VM migration time. The
migration time is given in equations (18) and (19).

The VM Migration Time (tMig
Vj

) can be computed as

tMig
Vj

= (V pj + V mj)/V nj (18)

where, V nj is the available bandwidth for VM Vj , in
Bytes/Seconds between the source and destination hosts.
The total VM Migration Time can be computed as

tMig
V =

|VMig|∑
j=1

tMig
Vj

(19)

In evaluating the total VM migration time tMig
V , the

values of tMig
Vj

are statistically independent for all VMs,
where VMig denotes the number of migrated VMs.

The energy consumed for VM migration can be com-
puted by

EMig
Vj

= PMig ∗ tMig
Vj

= PMig ∗ (V pj + V mj)/V nj (20)

where, PMig denotes a unit power consumption for migrat-
ing a VM.

Let CostE be the energy cost per unit, costP is the SLA
violation fixed penalty value, ωVj

is the portion of k task’s
served by Htarget

i and λHi is the average request rate for
Htarget
i . Fig. 4 indicates the migration cost model for the

proposed system. Then, the migration cost, CostMig , can be
calculated using

CostMig = CostE ∗ Pdynamici
|VMig|∑
j=1

φj+

|VMig|∑
j=1

costPij ∗ ωVj
∗ λi ∗ e−(((V

p
j +Vm

j)/V n
j)∗φj∗µi−λi) ∗

tVij
contract

(21)

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2918226, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPTUING, VOL., NO., 8

4 ALGORITHM DESIGN

4.1 Overview

Task scheduling and resource management are the striking
means to optimize energy consumption for CDCs to ensure
the timing requirements of tasks. The scheduling strategies
are used to schedule real-time tasks dynamically. Scheduling
process deals with various disruptions during system oper-
ation, including the arrival of new tasks or just-completed
tasks. In such events, the workload of CDC becomes heavy
and will lead to a scale-up situation to consolidate the
available physical and virtual resources based on the re-
quirements of tasks.

The main method energy-efficient dynamic scheduling
EDS () is presented in Algorithm 2, which has four methods.
MARKVM () is used to calculate various task and virtual
machine types. Similarly, TASKMERGE () is used to merge
same type of tasks. The SCALEUPRESOURCES() and CON-
SOLIDATION() methods are called multiple times when
system dynamically scale up and scale down computing
resources, respectively.

4.2 Description

When users submit their tasks T-k, EDS gathers the infor-
mation in Algorithm 2, which includes the arrival time tak
and deadline tdk. Then, these tasks join the Task Queue
of the entire system according to the decreasing order of
deadlines, and MARKVM () method (Algorithm 1) will be
called. Algorithm 1 is based on historical scheduling records
and Bayes classifier. It mainly consists of two parts. The first
part is classifying the upcoming tasks, and second part is
marking the virtual machines. Within Algorithm 1, lines 3-4
gather the information for tasks from historical scheduling
records, and then count the number of task types. Task
observer checks whether the task type for a given task is
available or not. If the task type was found, it would mark
the task type and VM types (lines 9-11), otherwise it would
mark T-k as new T-τk and V τj , and update HSR (Line 13).

Algorithm 1 Task and virtual machine types

1: procedure MARKVM()
2: Input: Task T-k, HSR
3: HT- ← Historical Task Set
4: ζ ← Task type count
5: For each task Tk in ζ
6: Compute P (HT-k)
7: End for
8: a← Choose High P (HT-k)
9: For each VM Vj in a

10: If V τj found of T-τk type then
11: V τj ← VM types based on P (HT-k)
12: Else
13: Create New Vj{V pj , V mj , V nj , V

s
j }, Create New V τj , Up-

date HSR
14: End If
15: End For
16: end procedure

In Algorithm 2, Line 6, the virtual machines are sorted
based on the ratio of power frequency, RPf . If V ϕj > T-ϕk

is satisfied, all the tasks of T-ϕk type will be sequencing
to Merging Queue (MQ)(Lines 8-11). Following this step,
method TASKMERGING() will be invoked in Line 13.

Algorithm 2 Energy-efficient dynamic scheduling

1: procedure EDS()
2: Input: Task T-k, a set of VM Vj , and set of host Hi

3: V τj ←MARKVM()
4: τ ← Choose T-τk
5: Set δ ← 0
6: Order VMs of V τj types with descending order of RPf
7: For V τj in list
8: If V ϕj > T-ϕk then

9: P (T-τk
′
|T-ϕk

′
) = (T-pk|V

p
j)(T-

m
k |V mj)

10: δ ← 1
11: MQ← List all the task of τ types
12: T-τk

′
= T-τk, t

e
k

′
= tek, t

d
k

′

= tdk
13: TASKMERGING()
14: Schedule T-τk

′
to Vij , Update HSR, Remove all merged

tasks from merging queue
15: End If
16: Else
17: SCALEUPRESOURCES()
18: If V ϕj > T-ϕk then
19: Go to line 9
20: End If
21: End If
22: End For
23: If δ = 0 then
24: V τj ← VM types [Create new VM types V τj], Update

HSR
25: If tek ≤ tdk then
26: TASKMERGING()
27: Else
28: Close Created VM
29: Reject T-k
30: End If
31: End If
32: CONSOLIDATION()
33: end procedure

In the task merging method, as shown in Algorithm 3,
similar type of tasks can be merged and scheduled to VM of
the same VM type. We merge as many the same typed tasks
as possible and assign them to a VM that can satisfy the
resource requirement. If the execution time of tasks T-τk and
T-τk+m1

can be scheduled within the deadline tdk and resource
requirements are satisfied, two tasks T-τk and T-τk+m1

will be
merged and scheduled to the VM, as shown in Fig. 3. Then,
the new execution time and deadline for a merged task T-τk

′

becomes tek
′
= tek + tek+m1

, tdk
′

= tdk, respectively (Lines 4-7).
Otherwise, the resources will be scaled up, and accordingly
scheduled (Lines 9-11).

In Algorithm 4, while scaling up the resources, all the
active hosts are sorted based on RPf (Lines 3-6). If the
requirements of the task can be accommodated by active
hosts, Vij of V τj is created and HSR is updated (Lines 6-
8). Otherwise, a new host will be powered on from Hoff

List
(power off host list) based on the decreasing order of RPf ,

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2918226, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPTUING, VOL., NO., 9

Algorithm 3 Task merging

1: procedure TASKMERGING()
2: Input: List all the task of τ types T-τk

′
= T-τk, t

e
k

′
= tek

3: For each T-τk in MQ
4: Calculate the execution time of task T-τk+mn

5: If (tek
′
+tek+mn

) ≤ tdk AND Satisfy resource requirements
then

6: T-τk
′
= T-τk

′
+ T-τk+mn

, tek
′
= tek

′
+ tek+mn

7: Else
8: SCALEUPRESOURCES()
9: If (tek

′
+ tek+mn

) ≤ tdk then
10: T-τk

′
= T-τk

′
+ T-τk+mn

, tek
′
= tek

′
+ tek+mn

11: Else
12: Break
13: End If
14: End If
15: End For
16: end procedure

Algorithm 4 Scale up resources

1: procedure SCALEUPRESOURCES()
2: Select a Vij that can finish task T-k before task deadline
3: If Vij != NULL then
4: Hactive

List ←− Active hosts
5: Sort Hactive

List by RPf in decreasing order
6: For each Hi in Hactive

List

7: If Hi can accommodate Vij then
8: Create Vij of V τj on Htarget

i , Update HSR
9: Break

10: End If
11: End For
12: End If
13: Select a VM Vij that satisfy V ϕ

′

j ≥ T-ϕ
′

k and tek ≤ tdk
14: If Vij != NULL, then
15: Hoff

List ← all the host being powered off
16: Sort Hoff

List by RPf in decreasing order
17: Power on Hi from Hoff

List, and Create new VM, Hactive
List

← Hi, Update HSR
18: End If
19: end procedure

then new Vj of V τj will be created and HSR will be updated
as well (Lines 14-17).

The workload of CDC naturally decreases if the arrival
ratio of real-time tasks from end-users declines. When
the idle time of VMs tIdleVij

are higher than the tIdle, the
consolidation method will apply to minimize the running
VMs and hosts, as shown in Algorithm 5. If tIdleVij

of Vij
exceeds tIdle, Vij will be deleted (Lines 2-7), and if Hactive

i

for deleted Vij becomes idle, Hi will be powered off (Lines
11-13). In addition, the virtual machines can be migrated
from less utilized hosts (hosts having fdi ≥ foi AND
fdi ≤ f thi) to high utilized hosts (hosts having fdi > f thi
AND fdi ≤ fmaxi), and idle hosts HIdle

i (hosts having
fdi < foi) are powered off to reduce energy consumed by
hosts in the CDC (Lines 8-27).

Algorithm 5 Scale down resources

1: procedure CONSOLIDATION()
2: V activej ←− all the active VMs
3: For Vj in V activej list
4: If tIdleVij

≤ tIdle
5: Delete Vij
6: End If
7: End For
8: Hactive

List ←− All the active hosts
9: List Hactive

List by RPf in decreasing order
10: a←− Select all Hactive

List having fdi ≤ f thi
11: For each host Hi in a
12: If Hi is idle then
13: Power off Hi

14: Else
15: b←− Select all the VMs from Hi

16: For VM Vj in b
17: Htarget

i ←− Select all the active hosts having fdi > f thi
AND fdi ≤ fmaxi

18: For each in Htarget
i

19: If Htarget
i can accommodate Vj then

20: Migrate Vj from Hi to Htarget
i

21: End If
22: Break
23: End For
24: Remove Vj from Hi

25: End For
26: Power off Hi

27: End For
28: end procedure

Example. Suppose users submit their tasks, T-k, to the
cloud, for which these tasks have various deadline and
heterogeneity. Scheduling scheme sequences these tasks
to the task queue based on decreasing order of deadlines.
A task set in the task queue is T- = {T-1,T-2,T-3, · · ·,T-k}.
The task observer checks similar information in historical
scheduling record and VMs data, such as task arrival
ratio, deadline, execution time, virtual machine information
(CPU, RAM, Network Bandwidth, Disk Storage), and
resource requirements (CPU, RAM, Network Bandwidth,
Disk Storage). As mentioned earlier, the task classification
is performed based on Bayes classifier. If the historical
scheduling record is found, the decision will be to sequence
these tasks in the merging queue with task type. If the
task observer is unable to find any historical scheduling
information which matched with tasks, the decision will
be to create a new virtual machine, mark it as new task
type and virtual machine types, and update HSR. Assume
T-1 has task type 1 and VM type 1, T-2 has task type 3 and
VM type 3, T-3 has task type 1 and VM type 1, T-4 has task
type 1 and VM type 1, as so on. Then, scheduler takes
T-11 (T-1 with type 1) for the merge process. The scheduler
sorts all the virtual machine of type 1 with descending
order of RPf . Then, it checks whether V 1

1 resources can
accommodate and schedule T-11 within the deadline or not.
If V 1

1 can accommodate T-13, scheduler sees the next task
of the same task type 1. It also checks again whether V 1

1

can accommodate both tasks or not. If both tasks can be

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2918226, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPTUING, VOL., NO., 10

accommodated, it will merge these two tasks and the

deadline for merged task T-11
′

of T-11 and T-13 becomes the
deadline of T-11(shortest deadline). If both tasks cannot
be accommodated by V 1

1 , then the scheduler scales up
resources and checks again whether V 1

1 can accommodate
both tasks or not. If yes, the merging will take place based
on the schedule of T-11 and T-13 to V 1

1 . Otherwise, it just
schedules only T-11 to V 1

1 .

4.3 Time Complexity Analysis
There are four methods running at different times during
the scheduling scheme of Algorithm 2, i.e., the classification
method described by Algorithm 1, the task merge method
described by Algorithm 3, the Scale-up method that when
some new host needs to be powered on in order to host
new tasks described by Algorithm 4, and the consolidation
method described by Algorithm 5.

Algorithm 1 has time complexity of O(n), where n is the
number of tasks, since each task needs to be checked and
given a task type and a VM type according to its resource
requirements. Let m denote the number of the active hosts,
and the complexity of Algorithm 3 is O(n ∗ mlogm). This
is because Algorithm 3 may call upon Algorithm 4 for each
task in the merging queue, and the complexity of Algorithm
4 is O(mlogm), since it needs to sort the active hosts in line
5 and the powered off hosts in line 16 of Algorithm 4.

After running for a period of time, consolidation needs
to be performed, using Algorithm 5 Scale Down Resources,
such that energy efficiency can be achieved. The hosts can be
considered in three states. The first part is idle hosts, where
they have nothing to do while still powered on; the second
part is the less utilized hosts (i.e., they have very few tasks
to execute, and the tasks can be migrated to the third part
of hosts); and the third part of the host is the one that can
accept newly migrated tasks. Let b be the number of VMs
that need to be migrated from part two to part three. Since
we need to find a suitable host in the third part of hosts
for each VM in the second part of the hosts to migrate, the
complexity of Algorithm 5 is O(m ∗ b).

The complexity of ETVMC [49] is O(n ∗m ∗ b), where n
is the number of tasks, m is the number of hosts, and b is
the number of VMs. Similarly, the complexity of CEVP [50]
and UMA [32] are O(n2) and O(n2), respectively.

5 EXPERIMENTS

This section describes the overall experimental setup, per-
formance metrics, results, and analysis to evaluate the EDS.
We compared the performance of EDS with ETVMC [49],
CEVP [50], and UMA [32] algorithms as all of them are
designed for energy optimization.

5.1 Environment Setup
Experimental environment includes CPU (Intel(R)
Core(TM) i5-3230 M, 2.60 GHz), Memory (8.0 GB), Hard
Disk (750 GB), Windows 10 operating system, NetBeansIDE,
JDK 8.0 and CloudSim. Powered by CloudSim toolkit [51],
our simulation carried out the dynamic scheduling process,
the mechanism of merging similar type of tasks and
energy-aware techniques.

TABLE 2: Simulated host specification

Host Types CPU (MIPS) Host Count
Type 1 1000 3360
Type 2 1500 2815
Type 3 2000 2325

TABLE 3: Task types with parameter

Task Types CPU Demand (GHz) Memory Demand (GB)
Type 1 0.01-0.09 0.003-0.016
Type 2 0.02-0.06 0.05-0.08
Type 3 0.05-0.09 0.003-0.009
Type 4 0.01-0.05 0.008-0.012
Type 5 0.15-0.17 0.03-0.10
Type 6 0.03-0.08 0.31-0.0.37
Type 7 0.01-0.05 0.006-0.009
Type 8 0.23-0.29 0.05-0.09

5.2 Performance Metrics

To simulate task’s heterogeneity and dynamic nature in
the CDC environment, we have used a total of 898,766
continuous tasks, and 8500 hosts. In the simulation, each
host is modeled to have only one CPU core with having
1,000 MIPS, 1,500 MIPS, and 2,000 MIPS CPU performance.
The host specifications are presented in Table 2. Based on
our simulation setup, we have identified four performance
metrics which can be computed by formula (9). These met-
rics include

1) Task guarantee ratio: The proportion of the number of
tasks finished before their deadlines to the total number of
tasks × 100%
2) Total energy Consumption: It represents the total energy
consumed by the physical hosts while scheduling tasks.
3) Mean Response Time: Optimal time taken to response to
user.
4) Resource Utilization: It represents the total utilization of
resources while scheduling tasks.

5.3 Experimental Results and Analysis

Table 3 describes the CPU and memory demands for each
type of tasks, and Table 4 describes the CPU and memory
capacity of each type of VMs. It is important to note that,
in the fiber optic network as well as hard disk provision in
CDCs, the network bandwidth and the hard disk capacity
are not critical elements, and hence they are typically
treated in a way that they will have the perfect match
with all the tasks. For this reason, the hard disk and the
network bandwidth were not considered in our analysis.

TABLE 4: VM types with parameter

VM Types CPU (GHz) Memory (GB)
Type 1 0.09 0.016
Type 2 0.06 0.08
Type 3 0.09 0.009
Type 4 0.05 0.012
Type 5 0.17 0.10
Type 6 0.08 0.0.37
Type 7 0.05 0.009
Type 8 0.29 0.09

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2918226, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPTUING, VOL., NO., 11

Fig. 5: Total energy consumption

Fig. 6: Total energy consumption with task count

As mentioned earlier in Section 2, once again, the existing
approaches for energy-efficient task scheduling in CDCs do
not investigate the problems of combining different tasks
of the same type in their underlying techniques. These
approaches mainly focus on either a particular task type,
or simply do not take into consideration a different kind of
application that assumes a homogeneous task.

The metrics under study were measured and experi-
ment results are shown in Fig. 5 to Fig. 15. A comparative
summary of the total energy consumption of the proposed
EDS and three peer algorithms is presented in Fig. 5, which
shows that EDS has an optimal total energy consumption
followed by CEVP, ETVMC, and UMA. Specifically, EDS
saves about 28.49%, 21.48%, and 31.04% of energy compared
to ETVMC, CEVP, and UMA, respectively. This performance
is achieved because EDS uses a consolidation technique that
performs simultaneous optimizations on the active number
of hosts and the operating frequencies to minimize energy
consumption.

Fig. 6 exhibits the total energy consumption of the four
algorithms with respect to task count. As shown in the fig-
ure, the computation length of task required to be processed
is linear to the number of tasks. Similarly, the total energy
consumption of the CDC is nearly linear to the computation
length of the system.

In every task count, EDS achieves better energy opti-
mization. For example, as shown in Fig. 7, type 1 consumes
the lowest energy while task count reaches 1.5 × 105. Sim-
ilarly, type 1 and type 8 consume the highest energy while
task count reaches 9× 105.

Task guarantee ratios of the physical and virtual re-

Fig. 7: Total energy consumption of task type with task
count

Fig. 8: Task guarantee ratio

sources of the four algorithms are shown in Fig. 8. The
guarantee ratio for the EDS, ETVMC, CEVP, and UMA are
stable in 96.12, 88.79, 93.78 and 87.57% with respect to the
rise of task counts. Fig. 9 shows the task guarantee ratio
with the task count of the four algorithms where the EDS
shows to have a higher task guarantee ratio followed by
CEVP, ETVMC and UMA. Similarly, Fig. 10 indicates the
task guarantee ratio with the task count, in which type 6 has
the highest guarantee ratio when task count reaches about
9× 105.

Fig. 9: Task guarantee ratio with task count

This particular observation can be associated to the fact
that there are adequate computing resources in CDC. Hence,
if the available resources can not accommodate the require-
ments of a task, accordingly more VMs will be created

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2918226, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPTUING, VOL., NO., 12

Fig. 10: Task guarantee ratio of task types with task count

and then added to run the workload in excess with extra
hosts powered-on as necessary. On the other hand, the task
guarantee ratio is not perfect as 100%. This phenomenon can
be attributed to the delay of scaling up and consolidating
resources.

Fig. 11: Total mean response time

Fig. 11 indicates the mean response time of the four
algorithms where the EDS apparently showed to have
the optimal mean response time. The reason for this out-
performance is that EDS benefits from a classification
method to minimize iterative communication time for se-
lecting the most suitable physical hosts and VMs. The total
mean response time with the task count are shown in Fig.
12. EDS has the lowest mean response time when task count
reaches 3× 105.

Fig. 13 shows the mean response time of task types with
different task counts. The mean response time of type 3 is
lowest when the task count reaches 3 × 105. Similarly, the
mean response time peaks when type 7 is at task count 6×
105.

We also observed that the resource utilization of the
four algorithms ascend accordingly. Fig. 14. shows that
the EDS has a higher resource utilization compared to its
peers. This may be due to the fact that EDS employs task
merging strategies to allocate similar type of tasks to most
suitable physical hosts and VMs, and it uses a consolidation
technique to enhance host operating frequencies and the
number of active hosts simultaneously that will result in
reducing unnecessary resource wastage.

Fig. 12: Total mean response time with task count

Fig. 13: Total mean response time of task types with task
count

Fig. 14: Resource utilization

Fig. 15 illustrates the resource utilization percentages
with the task count. As observed from the figure, the re-
source utilization is at a higher level when the task count
reaches 7.5× 105 and 9× 105.

We will now provide a comparative summary of the
waiting time of the proposed scheduling scheme and other
existing algorithms. As shown in Fig. 16, EDS outperforms
the other schemes, as their waiting times are linear to the
number of tasks. The waiting time of EDS is lowest when
the task count reaches 1.5× 105 and 7.5× 105. Similarly, the
waiting time is at a higher level when the task count reaches
9× 105.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2918226, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPTUING, VOL., NO., 13

Fig. 15: Resource utilization with task count

Fig. 16: Waiting time with task count

6 CONCLUSION AND FUTURE WORK

Energy consumption and optimization are ongoing (opera-
tional) challenges faced by CDCs. In this research, the pro-
posed EDS aims to optimize resource utilization and energy
consumption in CDCs. In the EDS, the dynamic scheduling
scheme makes use of HSR, classifies incoming tasks, creates
VMs with different features, and assigns tasks in accordance
with the matching features of the tasks and VMs; hence,
the resource utilization ratio can be improved. The merging
mechanism of same task types minimizes the mean response
time and reduces total energy consumption. In addition, the
scheme distributes and migrates tasks in accordance to the
energy consumption function and the states of the com-
puting resources (active or idle). The experimental results
indicated that the EDS has a higher task guarantee ratio,
shorter response time, higher resource utilization ratio, and
a minimal energy consumption, in comparison to existing
schemes.

In the future, we intend to investigate how task failure
prediction based on machine learning approach, and task
scheduling can be jointly optimized for better performance
in the context of fault-tolerant mechanism.

ACKNOWLEDGMENTS

This work is partially supported by the National Natural
Science Foundation of China (grant numbers 61520106005,
61761136014), and the National Key Research and Devel-
opment Program of China (grant number 2017YFB1010001).

The first author gratefully acknowledges CAS-TWAS Presi-
dent’s Fellowship for funding his Ph.D. at Chinese Academy
of Sciences, Beijing, China.

REFERENCES

[1] P. Mell and T. Grance, “The nist definition of cloud
computing (draft),” 2011. [Online]. Available: http://csrc.nist.
gov/publications/PubsSPs.html#800-145

[2] A. V. Dastjerdi, S. G. H. Tabatabaei, and R. Buyya, “A Dependency-
Aware Ontology-Based Approach for Deploying Service Level
Agreement Monitoring Services in Cloud,” Softw. - Pract. Exp.,
vol. 42, no. 7, pp. 501–518, 2011.

[3] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale:elastic
resource scaling for multi-tenant cloud systems,” pp. 1–14,
2011. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
2038916.2038921

[4] J. Koomey, “Growth in data center electricity use
2005 to 2010,” Oakland. CA Anal. Press, 2011. [Online].
Available: https://www.missioncriticalmagazine.com/articles/
84451-growth-in-data-center-electricity-use-2005-to-2010?v=
preview

[5] K. Zhou, S. Yang, and Z. Shao, “Energy internet: The business
perspective,” Appl. Energy, vol. 178, pp. 212–222, 2016. [Online].
Available: http://dx.doi.org/10.1016/j.apenergy.2016.06.052

[6] Christy Pettey, “Gartner estimates ICT industry accounts
for 2 percent of global CO2 emissions. Gartner Press
Release,” Gart. Press Release, 2007. [Online]. Available: http:
//www.gartner.com/it/page.jsp?id=503867

[7] Q. Zhang, Zhani, R. Boutaba, and J. L. Hellerstein, “Dynamic
heterogeneity-aware resource provisioning in the cloud,” IEEE
Trans. Cloud Comput., vol. 2, no. 1, pp. 14–28, 2015.

[8] X. Zhu, L. T. Yang, H. Chen, J. Wang, S. Yin, and X. Liu, “Real-time
tasks oriented energy-aware scheduling in virtualized clouds,”
IEEE Trans. Cloud Comput., vol. 2, no. 2, pp. 168–180, 2014. [Online].
Available: http://ieeexplore.ieee.org/document/6803043/

[9] R. Buyya, A. Beloglazov, and J. Abawajy, “Energy-efficient man-
agement of data center resources for cloud computing - a vision,
architectural elements, and open challenges,” in Parallel Distrib.
Process. Tech. Appl., 2010, pp. 6–17.

[10] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith,
A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
and A. Rabkin, “A view of cloud computing,” Commun.
ACM, vol. 53, no. 4, p. 50, 2010. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1721654.1721672

[11] L. A. Barroso and U. Hölzle, The Datacenter as a Computer,
2013, vol. 24. [Online]. Available: http://www.valleytalk.org/
wp-content/uploads/2013/10/WSC 2.4 Final-Draft.pdf

[12] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen
and the art of virtualization,” Proc. Ninet. ACM Symp.
Oper. Syst. Princ. - SOSP ’03, 2003. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=945445.945462

[13] L. Liu, H. Wang, X. Liu, X. Jin, W. B. He, Q. B. Wang,
and Y. Chen, “Greencloud: A new architecture for green
data center,” Proc. 6th Int. Conf. Ind. Sess. Auton. Comput.
Commun. Ind. Sess., pp. 29–38, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1555312.1555319

[14] Í. Goiri, J. L. Berral, J. O. Fitó, F. Juli, R. Nou, J. Guitart, R. Gavaldà,
and J. Torres, “Energy-efficient and multifaceted resource
management for profit-driven virtualized data centers,” Futur.
Gener. Comput. Syst., vol. 28, no. 5, pp. 718–731, 2012. [Online].
Available: http://dx.doi.org/10.1016/j.future.2011.12.002

[15] X. Wang, Z. Du, and Y. Chen, “An adaptive model-free
resource and power management approach for multi-tier cloud
environments,” J. Syst. Softw., vol. 85, no. 5, pp. 1135–1146, 2012.
[Online]. Available: http://dx.doi.org/10.1016/j.jss.2011.12.043

[16] Z. Xiao, S. Member, W. Song, and Q. Chen, “Machines for
cloud computing environment,” vol. 24, no. 6, pp. 1107–1117,
2013. [Online]. Available: http://ieeexplore.ieee.org/document/
6311403/

[17] S. Bazarbayev, M. Hiltunen, K. Joshi, W. H. Sanders, and
R. Schlichting, “Content-based scheduling of virtual machines
(vms) in the cloud,” Proc. - Int. Conf. Distrib. Comput. Syst., no.
July, pp. 93–101, 2013.

2168-7161 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2019.2918226, IEEE
Transactions on Cloud Computing

IEEE TRANSACTION ON CLOUD COMPTUING, VOL., NO., 14

[18] I. Hwang and M. Pedram, “Hierarchical virtual machine con-
solidation in a cloud computing system,” IEEE Int. Conf. Cloud
Comput. CLOUD, pp. 196–203, 2013.

[19] X. Li, Z. Qian, S. Lu, and J. Wu, “Energy efficient virtual
machine placement algorithm with balanced and improved
resource utilization in a data center,” Math. Comput. Model.,
vol. 58, no. 5-6, pp. 1222–1235, 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.mcm.2013.02.003

[20] J. Dong, X. Jin, H. Wang, Y. Li, P. Zhang, and S. Cheng, “Energy-
Saving virtual machine placement in cloud data centers,” Proc. -
13th IEEE/ACM Int. Symp. Clust. Cloud, Grid Comput. CCGrid 2013,
pp. 618–624, 2013.

[21] X. Xu, W. Dou, X. Zhang, and J. Chen, “Enreal: An energy-aware
resource allocation method for scientific workflow executions in
cloud environment,” IEEE Transactions on Cloud Computing, vol. 4,
no. 2, pp. 162–179, 2016.

[22] X. Xu, X. Zhang, M. Khan, W. Dou, and S. Xue, “A balanced
virtual machine scheduling method for energy-performance trade-
offs in cyber-physical cloud systems,” Future Generation Computer
Systems, 2017.

[23] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware
resource allocation heuristics for efficient management of
data centers for cloud computing,” Futur. Gener. Comput.
Syst., vol. 28, no. 5, pp. 755–768, 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2011.04.017

[24] M. A. Khoshkholghi, M. N. Derahman, A. Abdullah, S. Subrama-
niam, and M. Othman, “Energy-efficient algorithms for dynamic
virtual machine consolidation in cloud data centers,” IEEE Access,
vol. 5, pp. 10 709–10 722, 2017.

[25] Y. Liu, X. Sun, W. Wei, and W. Jing, “Enhancing energy-efficient
and qos dynamic virtual machine consolidation method in cloud
environment,” IEEE Access, vol. 6, pp. 31 224 – 31 235, 2018.

[26] A. Mosa and R. Sakellariou, “Virtual machine consolidation for
cloud data centers using parameter-based adaptive allocation,”
Proceedings of the Fifth European Conference on the Engineering of
Computer-Based Systems (ECBS), 2017.

[27] W. Guo, X. Ren, W. Tian, and S. Venugopal, “Self-adaptive con-
solidation of virtual machines for energy-efficiency in the cloud,”
Proceedings of the 2017 VI International Conference on Network, Com-
munication and Computing (ICNCC), 2017.

[28] Q. Liang, J. Zhang, Y. H. Zhang, and J. M. Liang, “The placement
method of resources and applications based on request prediction
in cloud data center,” Inf. Sci. (Ny)., vol. 279, pp. 735–745, 2014.
[Online]. Available: http://dx.doi.org/10.1016/j.ins.2014.04.026

[29] Z. Tang, Y. Mo, K. Li, and K. Li, “Dynamic forecast scheduling
algorithm for virtual machine placement in cloud computing
environment,” J. Supercomput., vol. 70, no. 3, pp. 1279–1296, 2014.

[30] F. Juarez, J. Ejarque, and R. M. Badia, “Dynamic energy-
aware scheduling for parallel task-based application in cloud
computing,” Futur. Gener. Comput. Syst., vol. 78, pp. 257–271, 2018.
[Online]. Available: http://dx.doi.org/10.1016/j.future.2016.06.
029

[31] M. Xu, A. V. Dastjerdi, and R. Buyya, “Energy efficient scheduling
of cloud application components with brownout,” IEEE Transac-
tion on Sustainable Computing, vol. 1, pp. 40–53, 2016.

[32] Q. Chen, J. Chen, B. Zheng, J. Cui, and Y. Qian, “Utilization-
based vm consolidation scheme for power efficiency in cloud data
centers,” IEEE ICC 2015-Workshop on Cloud Computing Systems,
Networks, and Applications (CCSNA), pp. 1928–1933, 2015.

[33] H. R. Faragardi, S. Dehnavi, T. Nolte, M. Kargahi, and T. Fahringer,
“An energy-aware resource provisioning scheme for real-time
applications in a cloud data center,” Journal of Software: Practice
and Example, pp. 1–24, 2018.

[34] H. R. Faragardi, A. Rajabi, K. Sandström, and T. Nolte, “Eaica:
An energy-aware resource provisioning algorithm for real-time
cloud,” 2016 IEEE 21st International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), 2016.

[35] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Resource
pool management: Reactive versus proactive or let’s be friends,”
Comput. Networks, vol. 53, no. 17, pp. 2905–2922, 2009. [Online].
Available: http://dx.doi.org/10.1016/j.comnet.2009.08.011

[36] J. Cao, Y. Wu, and M. Li, “Advances in grid and pervasive
computing,” vol. 3947, 2006. [Online]. Available: http://link.
springer.com/10.1007/11745693

[37] A. Beloglazov and R. Buyya, “Optimal online deterministic al-
gorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in cloud data

centers,” Concurr. Comput. Pract. Exp., vol. 24, no. 13, pp. 1397–
1420, 2012.

[38] G. L. Valentini and B. Khan, Samee U.and Pascal, “Energy-
efficient resource utilization in cloud computing,” Large
Scale Network-Centric Distributed System, 2012. [Online]. Avail-
able: http://onlinelibrary.wiley.com/doi/10.1002/9781118640708.
ch16/summary

[39] H. Li, H. Zhu, G. Ren, H. Wang, H. Zhang, and L. Chen,
“Energy-aware scheduling of workflow in cloud center with
deadline constraint,” 2016 12th Int. Conf. Comput. Intell. Secur.,
pp. 415–418, 2016. [Online]. Available: http://ieeexplore.ieee.org/
document/7820492/

[40] L. Wang, S. U. Khan, D. Chen, J. Kodziej, R. Ranjan, C. Z.
Xu, and A. Zomaya, “Energy-aware parallel task scheduling
in a cluster,” Futur. Gener. Comput. Syst., vol. 29, no. 7, pp.
1661–1670, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.
future.2013.02.010

[41] S. Hosseinimotlagh, F. Khunjush, and S. Hosseinimotlagh, “A
cooperative two-tier energy-aware scheduling for real-time tasks
in computing clouds,” Proc. - 2014 22nd Euromicro Int. Conf. Parallel,
Distrib. Network-Based Process. PDP 2014, pp. 178–182, 2014.

[42] E. N. Watanabe, P. P. V. Campos, K. R. Braghetto,
and D. Macedo Batista, “Energy saving algorithms for
workflow scheduling in cloud computing,” Comput. Networks
Distrib. Syst. (SBRC), 2014 Brazilian Symp., pp. 9–16, 2014.
[Online]. Available: http://ieeexplore.ieee.org/xpl/articleDetails.
jsp?arnumber=6927114

[43] K. Wu, R. Du, L. Chen, and S. Yan, “An energy-saving virtual-
machine scheduling algorithm of cloud computing system,” 2013
Int. Conf. Inf. Sci. Cloud Comput. Companion, no. 1, pp. 219–224,
2013. [Online]. Available: http://ieeexplore.ieee.org/document/
6973595/

[44] P. Zhang and M. Zhou, “Dynamic cloud task scheduling
based on a two-stage strategy,” IEEE Transactions on Automation
Science and Engineering, pp. 1–12, 2017. [Online]. Available:
https://doi.org/10.1109/TASE.2017.2693688

[45] A. Marahatta, Y.-S. Wang, F. Zhang, A. K. Sangaiah, S. K.
Sah Tyagi, and Z. Liu, “Energy-aware fault-tolerant dynamic task
scheduling scheme for virtualized cloud data centers,” Mobile
Networks and Applications, 2018.

[46] “Bayes Classifier.” [Online]. Available: https://en.wikipedia.org/
wiki/Bayes classifier

[47] Y. Mansouri, A. N. Toosi, and B. Rajkumar, “Cost optimization for
dynamic replication and migration of data in cloud data centers,”
IEEE Transactions on Cloud Computing, 2017.

[48] W. Dargie, “Estimation of the cost of vm migration,” 23rd Interna-
tional Conference on Computer Communication and Networks (ICCCN),
2014.

[49] S. K. Mishra, D. Puthal, B. Sahoo, P. P. Jayaraman, S. Jun, A. Y.
Zomaya, and R. Ranjan, “Energy-efficient vm-placement in cloud
data center,” Sustainable Computing: Informatics and Systems, 2018.

[50] X. Chen, Y. Chen, A. Y. Zomaya, R. Ranjan, and S. Hu, “Cevp:
Cross entropy based virtual machine placement for energy opti-
mization in clouds,” The Journal of Supercomputing, vol. 72, no. 8,
pp. 3194–3209, 2016.

[51] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provi-
sioning algorithms,” Software: Practice and Experience (SPE), Wiley
Press, vol. 41, no. 1, pp. 23–50, 2011.

