
Predicting the End-to-End Tail Latency of
Containerized Microservices in the Cloud

Joy Rahman
Dept. of Computer Science

University of Texas at San Antonio
San Antonio, Texas-78249

Email: joy.rahman@utsa.edu

Palden Lama
Dept. of Computer Science

University of Texas at San Antonio
San Antonio, Texas-78249

Email: palden.lama@utsa.edu

Abstract—Large-scale web services are increasingly adopting
cloud-native principles of application design to better utilize
the advantages of cloud computing. This involves building an
application using many loosely coupled service-specific compo-
nents (microservices) that communicate via lightweight APIs,
and utilizing containerization technologies to deploy, update, and
scale these microservices quickly and independently. However,
managing the end-to-end tail latency of requests flowing through
the microservices is challenging in the absence of accurate
performance models that can capture the complex interplay of
microservice workflows with cloud-induced performance vari-
ability and inter-service performance dependencies. In this paper,
we present performance characterization and modeling of con-
tainerized microservices in the cloud. Our modeling approach
aims at enabling cloud platforms to combine resource usage
metrics collected from multiple layers of the cloud environment,
and apply machine learning techniques to predict the end-to-end
tail latency of microservice workflows. We implemented and eval-
uated our modeling approach on NSF Cloud’s Chameleon testbed
using KVM for virtualization, Docker Engine for containerization
and Kubernetes for container orchestration. Experimental results
with an open-source microservices benchmark, Sock Shop, show
that our modeling approach achieves high prediction accuracy
even in the presence of multi-tenant performance interference.

I. INTRODUCTION

Large-scale web services (e.g Netflix, Microsoft Bing, Uber,
Spotify etc.) are increasingly adopting cloud-native principles
and design patterns such as microservices and containers to
better utilize the advantages of the cloud computing delivery
model, which includes greater agility in software deployment,
automated scalability, and portability across cloud environ-
ments [24, 30]. In a micro-services architecture, an appli-
cation is built using a combination of loosely coupled and
service-specific software containers that communicate using
APIs, instead of using a single, tightly coupled monolith of
code. This development methodology combined with recent
advancements in containerization technologies makes an ap-
plication easier to enhance, maintain, and scale. However, it
is challenging to manage the end-to-end tail latency (e.g 95th

percentile latency) of requests flowing through the microser-
vice architecture, which could result in poor user experiences
and loss of revenue [32, 46].

Containerized microservices deployed in a public cloud are
scaled automatically based on user-specified static thresholds

for per-microservice resource utilization [1, 2, 6]. However,
this places a significant burden on application owners who
are concerned about the end-to-end tail latency (e.g 95th per-
centile latency) [28]. Setting appropriate resource utilization
thresholds on various microservices to meet the end-to-end
tail latency in such complex distributed system is difficult and
error-prone in the absence of accurate performance models.

There are many challenges in modeling the end-to-end tail
latency of containerized microservices. First, a microservice
architecture is characterized by complex request execution
paths spanning many microservices forming a directed acyclic
graph (DAG) with complex interactions across the service
topology [28, 29, 39]. Second, the tail latency is highly
sensitive to any variance in the system which could be re-
lated to application, OS or hardware [32]. Third, in a cloud
environment where microservices run as containers hosted on
a cluster of virtual machines (VMs), application performance
can degrade often in unpredictable ways [18, 21, 24, 44].

Traditionally, analytical models based on queuing theory
have been widely applied for performance prediction and
resource provisioning of monolithic (3-tier) applications [40,
41]. However, such techniques can become intractable when
dealing with the scale and complexity of microservice ar-
chitecture, and the presence of cloud-induced performance
variability. Furthermore, analytical modeling is a white-box
approach that often requires intrusive instrumentation of ap-
plication code for workload profiling and expert knowledge
about the application structure and data flow between various
components [25]. Such approach can be impractical from
a cloud provider’s perspective since customer applications
appear with limited visibility to the cloud providers.

There are black-box modeling approaches that relate ob-
servable resource usage metrics [36, 42] or resource allocation
metrics [43] with the performance of monolithic applications
hosted in virtualized computing environments. More recent
studies [19, 26] focused on runtime trace analysis tools
and simulation based approaches to analyze the performance
of microservice-based applications. However, none of these
works study the impact of cloud induced performance interfer-
ence on microservice-based applications, and the resulting in-
accuracies in performance modeling. In this paper, we observe
that the end-to-end tail latency of microservice workflows are

highly sensitivity to performance interference in the cloud.
Furthermore, we show that the tail latency of microservice
workflows can be accurately predicted even in the presence of
performance interference, with the help of machine learning
and multi-layer data collected from the cloud environment.

In particular, we make the following contributions.
1. We quantify the impact of resource utilization and perfor-

mance interference experienced by various microservices
on the end-to-end tail latency of various request workflows
in a web application. Since CPU is a major bottleneck
for most web applications, we use CPU utilization as a
resource metric in this paper, and focus on the performance
interference caused by the contention in shared processor
resources such as LLC (last level cache) and memory
bandwidth. However, our approach can be easily extended
to include other resource metrics.

2. We propose a modeling approach that combines multi-layer
data including container-level, VM level and a hardware
performance counter based metric, CPI (clock cycles per
instruction), to accurately predict end-to-end tail latency in
the presence of performance interference in the cloud.

3. We apply several machine learning based modeling tech-
niques, and compare their accuracy in predicting the end-
to-end performance for containerized microservices.

4. We demonstrate the feasibility of utilizing the proposed
performance models in making efficient resource scaling
decisions. For this purpose, we formulate resource scaling
of microservices as a constrained nonlinear optimization
problem, and solve it to calculate appropriate resource
utilization thresholds on various microservices, so that
they can be scaled efficiently to meet a performance SLO
(service level objective) target.

5. We implement and evaluate the proposed techniques using
a representative microservices benchmark, Sock Shop [14],
using the NSF Chameleon cloud [3] testbed. The Sock
Shop benchmark is containerized with Docker [35] and
deployed in a cluster of VMs managed by Kubernetes [8]
an open-source container orchestration engine.

The rest of this paper is organized as follows. Section II
provides the background on microservice archiecture. Related
work are discussed in Section III. Section IV describes the
testbed setup and benchmarks used. Section V presents the
performance characterization of containerized microservices.
Section VI provides the performance modeling approach.
Section VII discusses resource scaling optimization based on
the proposed models. Section VIII concludes the paper.

II. BACKGROUND ON MICROSERVICE ARCHITECTURE

Microservice architecture aims to overcome various limita-
tions of traditional monolithic architecture for software devel-
opment [10, 22]. Figure 1 illustrates the difference between
multi-tier monolithic architecture and microservice architec-
ture in the context of an e-commerce application that takes
orders from customers, verifies product catalogue, processes
payment and ships orders. In monolithic architecture, the web
application is divided into technology-specific tiers such as

(a) Monolith. (b) Microservices.

Fig. 1: Monolithic vs microservice architecture.

a frontend web tier for serving web contents, an application
tier composed of numerous tightly coupled components for
implementing the entire business logic, and a shared database
tier for data persistence. A monolithic application is often
simple to design. However, in order to update one component,
the entire application has to be redeployed. Furthermore, each
component within a tier cannot be scaled independently based
on its resource requirements. On the other hand, microservice
architecture splits the application into many smaller self-
contained components, called microservices, that serve specific
business functions and communicate with each other via
lightweight language-agnostic APIs. Each microservice has
its own code and database without any shared component
with other services. This facilitates flexibility in application
deployment and enhanced scalability since each component
of an application can be updated and scaled independently. In
essence, microservice architecture is a variant of the Service-
Oriented Architecture (SOA) that emphasizes fine-grained
services and lightweightness.

III. RELATED WORK

Performance modeling and dynamic resource provisioning
of Internet applications has been an important research topic
for many years [31, 36, 37, 40, 41, 43, 45]. There are
traditional analytical modeling approaches based on queueing
theory [40, 41], and hybrid approaches that combine queueing
theory with machine learning techniques [38, 45]. Urgaonkar
et al. [41] designed a dynamic server provisioning technique
on multi-tier server clusters. The technique decomposes the
per-tier average delay targets to be certain percentages of
the end-to-end delay constraint. Singh et al. [38] applied k-
means clustering algorithm and a G/G/1 queuing model to
predict the server capacity for a given workload mix. Although
these approaches were effective for multi-tier monolithic ap-
plications, they can become intractable when dealing with
complex microservice architecture in a cloud environment.
The complexity introduced by having many moving parts
with complex interactions and the presence of cloud-induced
performance variability [21, 44] pose significant challenges
in modeling the system behavior, identifying critical resource
bottlenecks and managing them effectively.

Blackbox modeling techniques have been widely adopted in
cluster resource allocation and management [31, 36, 42, 43].

Fig. 2: Workflow DAGs.

Nguyen et al.[36] applied online profiling and polynomial
curve fitting to provide a black-box performance model of the
applications SLO violation rate for a given resource pressure.
Wajahat et al. [42] presented an application-agnostic, neural
network based auto-scaler for minimizing SLA violations of
diverse applications. Wang et al. [43] applied fuzzy model
predictive control and Lama et al. [31] proposed self-adaptive
neural fuzzy control techniques for dynamic resource man-
agement of monolithic cloud applications. However, these
studies do not address the modeling inaccuracies caused by
the performance interference in the cloud, and the complexity
introduced by microservice architecture.

A few studies have focused on managing the end-to-
end performance objectives of large-scale web services and
analyzing their complex performance behavior [27, 28, 39].
Guo et al. [27] highlighted how the complex interactions
between various components of large-scale web services not
only lead to sharp degradation in performance, but also trigger
cascading behaviors that result in wide-spread application
outages. Jalaparti et al. [28] presented Kwiken, a framework
that decomposes the problem of minimizing latency over
a general processing DAG in a large web service into a
manageable optimization over individual stages. Suresh et
al. [28] presented Wisp, a resource management framework
that applies a combination of techniques, including estimating
local workload models based on measurements of imme-
diate neighborhoods, distributed rate control and metadata
propagation to achieve end-to-end throughput and latency
objectives in Service-Oriented architectures. These approaches
are complimentary to our work as they focus on solutions that
need to be adopted at the application layer in the context
of cloud computing stack, and requires expert knowledge
about the application. On the other hand, our performance
modeling approach does not require intrusive instrumentation
of application code for profiling or expert knowledge about
the data flow between various components.

IV. PLATFORM

A. Experimental Testbed

We setup a cloud prototype testbed, which closely resembles
a real-world cloud platforms such as Google Kubernetes
Engine [6] and Amazon Elastic Container Services [2]. Our
testbed consists of a physical layer of bare metal servers, a
VM layer built on top of the physical layer and a container
layer built on top of VM layer.

Physical Servers. We used four bare metal servers leased on
NSF Chameleon Cloud[3] testbed. Each server was equipped
with dual socket Intel Xeon E5-2670 v3 Haswell processors
(each with 12 cores @ 2.3GHz) and 128 GiB of RAM. Each
server was connected to a Dell switch at 10Gbp, with 40Gbps
of bandwidth to the core network from each switch.

VMs. We setup 16 VMs on top of the bare metal servers by
using KVM for server virtualization. Each VM was configured
with four vCPUs, 8GB Ram and 30GB disk space.

Containers. We setup a 16 VM Kubernetes cluster for
container orchestration and management. Docker (version
18.03.1-ce) was used as the container run time engine on each
VM. Kubernetes pod networking was setup using Calico CNI
(Container Network Interface) network plugin [11]. We use the
term pod and container interchangeably in this paper, since we
use a one-container-per-Pod model, which is the most common
Kubernetes use case.

B. Workloads

For performance characterization, we used Sock Shop [14],
an open-source microservices benchmark that is particularly
tailored for container platforms. Sock Shop emulates an e-
commerce website as shown in Figure 1 with the specic aim of
aiding the demonstration and testing of existing microservice
and cloud-native technologies. Recent study suggests that Sock
shop closely reflects how typical microservices applications
are currently being developed and delivered into production,
as reported by practitioners and industry experts [17]. We used
the Locust tool [9] to generate user traffic for the Sock Shop
benchmark. The workload traffic is composed of a number of
concurrent clients that generate HTTP-based REST API calls
to Sock Shop. To create a controlled interference workload for
our experiments, we used the STREAM Memory Bandwidth
benchmark[33]. STREAM is a synthetic benchmark program
geared towards measuring memory bandwidth (in MB/s) cor-
responding to computation rate for simple vector kernels. We
run the benchmark inside a docker container and deploy it as
a batch job in kubernetes.

V. PERFORMANCE CHARACTERIZATION

One of the challenges that complicate performance char-
acterization of a microservice architecture is that request
execution workflows can form directed acyclic graph (DAG)
structures spanning across many microservices. As a result,
the end-to-end latency of a workflow is impacted by the
performance behavior of multiple microservices in a complex
way. We use the term workflow to represent application-
specific group of requests that are associated with a particular
API endpoint, which is usually in the form of an HTTP
URI. For instance, in case of the Sock Shop benchmark
shown in Figure 1, the HTTP URIs for workflows involved
with processing orders are [base url: / GET / Orders] and
[base url: / POST / Orders]. The exact structure of DAG
for request workflows is often unknown, since it depends on
multiple factors such as the APIs invoked at each encountered
microservice, the supplied arguments, the content of caches, as

0 25 50 75 100
CPU utilization (%)

0

100

200

300
95

th
 p

er
ce

nt
ile

 la
te

nc
y

(m
s) orders_worflow

cart_worflow

(a) CPU utilization of orders microservice.

0 25 50 75 100
CPU utilization (%)

0

100

200

300

95
th

 p
er

ce
nt

ile
 la

te
nc

y
(m

s) orders_worflow
cart_worflow

(b) CPU utilization of cart microservice.

0 25 50 75 100
CPU utilization (%)

0

100

200

300

95
th

 p
er

ce
nt

ile
 la

te
nc

y
(m

s) orders_worflow
cart_worflow

(c) CPU utilization of frontend microservice.

Fig. 3: Impact of CPU utilization on the tail latency of various workflows.

well as the use of load balancing along the service graph [39].
We used a visualization and monitoring tool, weavescope [16],
to map the DAG structure of orders and cart workflows as
shown in Figure 2.

A. End-to-end Tail Latency

First, we analyze the impact of CPU utilization of individual
microservices on the end-to-end tail latency of two different
workflows viz. orders and cart in the Sock Shop benchmark.
For this purpose, we run experiments with various workload
intensities by varying the number of concurrent clients in
the workload generator from 5 to 50, while setting the total
number of generated requests to be 50000. We also vary
the number of pods allocated to cart, orders and frontend
microservices to include various combination of scaling con-
figurations. The CPU utilization of a particular microservice
is measured as the average CPU utilization of all the pods
allocated to that microservice. As shown in Figures 3 (a),
(b) and (c) the end-to-end tail latency of various workflows
have a non-linear relationship with the CPU utilization of
individual microservices. We observe that the 95th percentile
latency of the two workflows increase significantly even at low
CPU utilization values of the orders and cart microservices.
On the other hand, only high CPU utilization values (>70%)
of the frontend microservice has significant impact on the
95th percentile latency. For example, the tail latency of the
orders workflow reaches 200 ms at 49%, 57% and 106%
CPU utilizations of the orders, cart and frontend microservices
respectively.

B. Impact of Performance Interference

Next, we analyze the impact of performance interference in
a cloud environment on the multivariate relationship between
CPU utilization of various microservices and the end-to-end
tail latency of particular request workflows. For the sake of
clarity, we present our analysis using top four microservices
from the Sock Shop benchmark ranked according to their CPU
utilization values. To induce performance interference, we
colocate pods running the memory-intensive STREAM [33]
benchmark on the VMs that host the pods running cart and

frontend microservices respectively. The intensity of interfer-
ence is fixed by running four pods for each interfering work-
load. The workload intensities and the scaling configurations
for orders, cart and frontend microservices are varied similar
to the previous experiment. As shown in Figures 4 (a), (b)
and (c) the end-to-end tail latency of the orders workflow is
influenced by the CPU utilization of multiple microservices.
However, their multivariate relationship changes significantly
depending on the performance interference experienced by
various microservices. Furthermore, compared to the case
when there is no interference, the same range of end-to-end tail
latency is observed at much lower CPU utilization values in
the presence of interference. Similar results were obtained for
the cart workflow as shown in Figures 5 (a), (b) and (c). This
implies that the CPU utilization of microservices measured
at the pod level are insufficient in accurately predicting the
end-to-end tail latency of various workflows.

Figure 6 shows the distribution of the 95th percentile latency
of various workflows under three different scenarios, i.e with
interference on cart, interference on frontend and without
interference. The variation in the latency observed within each
case is mainly due to the varying workload intensities in
these experiments. On average the performance degradation
observed by orders and cart workflows due to interference
on cart microservice are 22% and 79% respectively. On the
other hand, the average performance degradation of the two
workflows due to interference on frontend microservice are
6% and 18% respectively. These results demonstrate the com-
plex interplay between performance interference, inter-service
performance dependency and the end-to-end tail latency of
various workflows.

VI. PERFORMANCE MODELING WITH MACHINE
LEARNING

In this section, we present our approach to address the
challenges of predicting the end-to-end tail latency of complex
workflows in a microservice architecture in the face of diverse
performance interference patterns. Our approach combines the
resource usage metrics at the container/pod level with VM
level resource usage and hardware performance counter values
to construct machine learning (ML) based performance models

cart frontend order user
0

20

40

60

80

100

120
C

PU
 u

til
iz

at
io

n
(%

)
95th percentile orders workflow latency (ms)

(100, 200]
(200, 300]
(300, 400]

(a) without interference.

cart frontend order user
0

20

40

60

80

100

120

C
PU

 u
til

iz
at

io
n

(%
)

95th percentile orders workflow latency (ms)

(100, 200]
(200, 300]
(300, 400]

(b) with interference on cart.

cart frontend order user
0

20

40

60

80

100

120

C
PU

 u
til

iz
at

io
n

(%
)

95th percentile orders workflow latency (ms)

(100, 200]
(200, 300]
(300, 400]

(c) with interference on frontend.

Fig. 4: Impact of performance interference on the multivariate relationship between CPU utilization and end-to-end tail latency
of orders workflow.

cart frontend order user
0

20

40

60

80

100

120

C
PU

 u
til

iz
at

io
n

(%
)

95th percentile cart workflow latency (ms)

(0, 100]
(100, 200]
(200, 300]

(a) without interference.

cart frontend order user
0

20

40

60

80

100

120

C
PU

 u
til

iz
at

io
n

(%
)

95th percentile cart workflow latency (ms)

(0, 100]
(100, 200]
(200, 300]
(300, 400]

(b) with interference on cart.

cart frontend order user
0

20

40

60

80

100

120

C
PU

 u
til

iz
at

io
n

(%
)

95th percentile cart workflow latency (ms)

(0, 100]
(100, 200]
(200, 300]

(c) with interference on frontend.

Fig. 5: Impact of performance interference on multivariate relationship between CPU utilization and end-to-end tail latency of
cart workflow.

int
rf o

n c
art

int
rf o

n f
ron

ten
d

w/o
int

erf
ere

nc
e

0

100

200

300

400

95
th

 p
er

ce
nt

ile
 la

te
nc

y
(m

s) orders workflow

int
rf o

n c
art

int
rf o

n f
ron

ten
d

w/o
int

erf
ere

nc
e

cart workflow

Fig. 6: Impact of performance interference on the end-to-end
tail latency of various workflows.

for individual workflows. Our modeling approach does not rely
on any expert application knowledge. Hence, it can be easily
extended to fit the need of diverse applications.

A. Data Collection

In this paper, we use CPU utilization as a resource metric for
the microservices since CPU is a major resource bottleneck in
most web applications. We use docker stats [4] to measure pod
level CPU utilization. To capture the impact of performance
interference due to the contention of processor resources, such

as the last level cache (LLC) and memory bandwidth, we
utilize the CPU utilization and CPI metric associated with
the VMs that host the various microservices as pods. We use
the virt top [15] tool to measure VM level CPU utilization.
CPI is measured on a per cgroup basis by using the perf
event [23] tool and each cgroup is mapped to a VM. For
data collection, we conduct extensive experiments on our
cloud prototype testbed by varying the number of concurrent
clients, and the performance interference levels experienced
by different microservices in the Sock Shop benchmark. We
also vary the number of pods allocated to the microservices.
For each experiment, we measure the end-to-end tail latency
of various workflows as reported by the Locust [9] tool. The
collected data is used to train our machine learning based
performance models.

B. Machine Learning Models

We build performance models for predicting the end-to-end
tail latency of each microservice workflow by applying various
machine learning (ML) techniques including Linear Regres-
sion (LR), Support Vector Regression (SVR), Decision Tree
(DT), Random Forrest (RF) and a deep Neural Network (NN)
based regression (more specifically a multi-layer perceptron
with multiple hidden layers). The ML models are built and
trained by using scikit-learn [12], a machine learning library

LR SVR DT RF NN
ML models

0

5

10

15

20

25

M
ea

n
Ab

so
lu

te
 P

er
ce

nt
ag

e
Er

ro
r (

%
)

Pod_CPU
Pod_CPU+VM_CPI
Pod_CPU+VM_CPU

(a) Mean absolute percentage error.

LR SVR DT RF NN
ML models

0.00

0.25

0.50

0.75

1.00

1.25

R
2

Sc
or

e

Pod_CPU
Pod_CPU+VM_CPI
Pod_CPU+VM_CPU

(b) R2 Score.

Fig. 7: Prediction accuracy of various ML models for orders.

LR SVR DT RF NN
ML models

0

10

20

30

M
ea

n
Ab

so
lu

te
 P

er
ce

nt
ag

e
Er

ro
r (

%
)

Pod_CPU
Pod_CPU+VM_CPI
Pod_CPU+VM_CPU

(a) Mean absolute percentage error.

LR SVR DT RF NN
ML models

0.00

0.25

0.50

0.75

1.00

1.25

R
2

Sc
or

e

Pod_CPU
Pod_CPU+VM_CPI
Pod_CPU+VM_CPU

(b) R2 Score.

Fig. 8: Prediction accuracy of various ML models for cart.

in Python.
Feature Selection. The input features of our ML models

include the number of concurrent clients, pod-level resource
metrics and VM-level resource metrics. The pod-level metrics
include the average CPU utilization of load-balanced pods for
each microservice. The VM-level metrics include the CPU
utilization or the CPI of VMs that host the pods. To reduce
our feature space and avoid potential over-fitting issues, we
apply a popular feature selection technique called stability

TABLE I: Optimal number of neurons in the three hidden
layers of NN models for orders and cart workflow.

Input Feature
Workflow orders cart

Pod CPU (6,3,5) (8,5,6)
Pod CPU+VM CPU (4,6,3) (3,6,8)
Pod CPU+VM CPI (9,6,4) (5,7,5)

selection [34]. In particular, we use scikit-learn [12] library’s
randomized lasso technique, which works by subsampling
the training data and computing a Lasso estimate where the
penalty of a random subset of coefficients has been scaled. By
performing this operation several times, the method assigns
high scores to features that are repeatedly selected across
randomizations. The features selected for the orders workflow
are the number of concurrent clients, pod-level CPU utilization
of the microservices including front-end, orders, users, ship-
ping, payment, cart, users-db, orders-db, cart-db, and the CPU
utilization or CPI of the VMs that host these microservices.
Similarly, the features selected for the cart workflow are the
number of concurrent clients, the pod-level CPU utilization
of the microservices including front-end, orders, cart, cart-db,
and the CPU utilization or CPI of the VMs that host these
microservices.

Hyper-parameters. The hyper-parameters of each model is
set to the default values provided by scikit-learn. We observe
that the prediction accuracy of the deep NN model is highly
sensitive to the number of hidden layers and the size (number
of neurons) in each hidden layer. Hence, we tuned these
parameters through an exhaustive search for various combi-
nations of input feature space and the targeted workflow for
the prediction of end-to-end tail latency. The optimal number
of hidden layers for our NN model is three, and the optimal
number of neurons in these three hidden layers is summarized
in Table I.

C. Prediction Accuracy

In this section, we evaluate the prediction accuracy of
various ML models (LR, SVR, DT, RF, NN) and three
modeling approaches. First, the Pod CPU approach includes
pod-level CPU utilization metrics in the input feature space.
Second, the Pod CPU+VM CPU approach includes both
pod-level and VM-level CPU utilization metrics. Third, the
Pod CPU+VM CPI approach includes pod-level CPU utiliza-
tion and VM-level CPI metrics in the input feature space.
The models are evaluated with 10-fold cross validation on the
collected dataset. As a result, 90% of data is used for training,
10% of data is used for testing in each of the 10 iterations of
cross-validation. We utilize commonly used metrics such as
the mean absolute percentage error (MAPE) and the coefficient
of determination, R2. MAPE is calculated as 1

n

∑n
i=1

∣∣∣y−ŷy

∣∣∣
where y and ŷ are the measured and predicted values of
the end-to-end tail latency respectively. R2 is a statistical
measure of how well the regression predictions approximate
the real data points. An R2 of 1 indicates that the regression
predictions perfectly fit the data.

0 100 200 300 400 500
Measured tail latency (ms)

0

100

200

300

400

500
Pr

ed
ic

te
d

ta
il

la
te

nc
y

(m
s)

(a) Linear regression with Pod CPU.

0 100 200 300 400 500
Measured tail latency (ms)

0

100

200

300

400

500

Pr
ed

ic
te

d
ta

il
la

te
nc

y
(m

s)

(b) Linear regression with Pod CPU
and VM CPI.

0 100 200 300 400 500
Measured tail latency (ms)

0

100

200

300

400

500

Pr
ed

ic
te

d
ta

il
la

te
nc

y
(m

s)

(c) Neural network with Pod CPU.

0 100 200 300 400 500
Measured tail latency (ms)

0

100

200

300

400

500

Pr
ed

ic
te

d
ta

il
la

te
nc

y
(m

s)

(d) Neural network with Pod CPU
and VM CPI.

Fig. 9: Cross-validated predictions of tail latency in orders workflow.

Figures 7 (a) and (b) show that, compared to the
Pod CPU based modeling approach, Pod CPU+VM CPU and
Pod CPU+VM CPI approaches achieve significant improve-
ment in the prediction accuracy of each ML model for the
orders workflow. This is because VM-level CPU utilization can
capture inter-pod CPU contention within a VM. Furthermore,
VM-level CPI metric can capture the contention of shared
processor resources between multiple pods within a VM
as well as across VMs. Such inter-VM resource contention
may arise when the concerned VMs are colocated in the
same physical machine. The improvement in the prediction
accuracy in terms of MAPE due to Pod CPU+VM CPU and
Pod CPU+VM CPI approaches are up to 36% and 38% re-
spectively. The largest improvement is observed in case of the
NN model. We also observe that the NN model outperforms all
other models in prediction accuracy since the Neural Network
is a universal function approximator. On the other hand, the
LR model shows the worst prediction accuracy. This is because
a linear regression model can not capture the non-linearity of
tail latency. Overall, we observed similar results in the latency
prediction of cart workflow as shown in Figure 8.

Figure 9 plots the cross-validated predictions vs. the mea-
sured values of end-to-end tail latency of the orders workflow
in order to graphically illustrate the different R2 values for the
LR and NN models. Theoretically, if a model could explain
100% of the variance in the observed data, the predicted values
would always equal the measured values and, therefore, all the
data points would fall on the fitted regression line. The more
variance that is accounted for by the regression model the
closer the data points will fall to the fitted regression line. The
proportion of variance accounted for by the LR model with
Pod CPU , LR model with Pod CPU+VM CPI, NN model
with Pod CPU and NN model with Pod CPU+VM CPI ap-
proaches are 42%, 66%, 71% and 89% respectively.

VII. OPTIMIZATION FOR RESOURCE SCALING

Although existing cloud platforms [1, 2, 5, 6] provide mech-
anisms for auto-scaling microservices, they expect application
owners to specify specify thresholds for various microservice
load metrics to enable auto-scaling features. For example,
the auto-scaling feature [7] in Kubernetes determines the
allocation of containers/pods to a microservice by using the

TABLE II: Notation used in Resource Scaling Optimization
Problem

Symbol Description
Sj Set of microservices relevant to workflow j

SLOtarget
j Tail latency target of workflow j

xi Average pod-level CPU utilization in microservice i
x A vector of average pod-level CPU utilizations of various

microservices relevant to the target workflow
rj(x) Predicted tail latency of workflow j

formula:

desiredReplicas =
⌈
currentReplicas ∗ currentMetricV alue

desiredMetricV alue

⌉
(1)

If the desiredMetricValue (threshold) is specified as an
average CPU utilization of 50% for a particular microservice,
and the current average CPU utilization is 100%, then the
number of pods allocated to that microservice will be doubled.
Furthermore, any scaling is only be made if the ratio of
currentMetricValue and desiredMetricValue drops below 0.9
or increases above 1.1 (10% tolerance by default). It is chal-
lenging and burdensome for application owners to determine
the resource utilization thresholds for various microservices in
order to meet the application’s end-to-end performance target.
Setting inappropriate thresholds may lead to overprovisioning
or underprovisioning of resources. We propose that cloud plat-
forms should automatically determine these thresholds based
on user-provided performance SLO targets. For this purpose,
we study the feasibility of utilizing the proposed performance
models in making efficient resource scaling decisions by
formulating a constrained nonlinear optimization problem.

A) Problem Formulation. Consider that the performance
SLO target in terms of the end-to-end tail latency for a
workflow is specified. For a given workload condition, we aim
to find the highest resource utilization values of the relevant
microservices, at which the given SLO targets will not be
violated. These optimal utilization values can be calculated
periodically and set as the thresholds (desiredMetricValue)
for making resource scaling decisions. These thresholds will
help in determining which microservices should be scaled,
and how many pods should be allocated to each microservice
based on Equation 1. This approach aims to avoid resource

overprovisioning while providing performance guarantee to
the given workflow.

We formulate the optimization problem as follows:

max
∑
i∈Sj

xi (2)

s.t. rj(x) ≤ SLOtarget
j (3)

x = (xi)i∈Sj (4)

where, the symbol notations are described in Table II. The ob-
jective function in Equation 2 aims to maximize the pod-level
resource usage i.e the sum of average CPU utilization in the set
of microservices that are relevant to the target workflow. The
relevance of a microservice to a workflow can be determined
either by analyzing the workflow DAG, or through machine
learning based feature selection as described in Section VI-B.
Consider that rj(x) is the tail latency predicted by machine
learning model for workflow j. The inequality constraint in
Equation 3 ensures that the SLO target of workflow j will
not be violated. The optimization problem is nonlinear since
the workflow tail latency rj(x) included in the constraint
Equation 3 has a nonlinear relationship with the average CPU
utilization of various microservices.

In the formulation of the optimization problem, application-
layer metrics (e.g number of concurrent clients), VM-level
CPU utilization and CPI metrics are not included as variables,
although the tail latency prediction rj(x) depends on these
metrics as well. Instead, the values of these metrics are fixed
according to their observed values at the time of solving
the optimization problem, and are treated as constants for
that instance of optimization. As a result, the solutions to
the optimization problem will only include pod-level CPU
utilization values, which can be directly used as thresholds for
making resource scaling decisions. This allows the resource
scaling mechanism to be practical and simple to implement.

B) Solution. We apply a non-linear optimization technique,
trust-region interior point method [13, 20], to solve this prob-
lem. This optimization technique provides two main benefits.
First, it is efficient for large scale problems. Second, the
gradient of the constraint function which is required for
optimization, can be approximated through finite difference
methods in this optimization technique [13]. This property
is desirable since the machine learning models for workflow
tail latency are blackbox functions, whose gradient can not be
directly calculated.

C) Feasibility Study. As a case study, we apply the opti-
mization technique to calculate the desired CPU utilization
(thresholds) for various relevant microservices, when a work-
load of 30 concurrent clients is applied to the SockShop
benchmark, and a performance SLO target of 240 ms is
specified for the 95th percentile latency of orders workflow.
For this optimization, we utilize our Neural Network model
for orders workflow with pod-level CPU utilization, VM-level
CPI metrics and the number of concurrent clients as the input
features. Figure 10 (a) compares the current (measured) CPU
utilization of the microservices relevant to orders workflow

ca
rt

ord
ers

fro
nte

nd

sh
ipp

ing

pa
ym

en
t

us
er

us
er_

db

microservice

0

20

40

60

80

C
PU

 u
til

iz
at

io
n

(%
) desired

measured

(a) Current vs desired average CPU utilization
of various microservices. Here, one pod is
allocated to each microservice.

(1,
1,1

)

(1,
2,1

)

(2,
1,1

)

(1,
1,2

)

(2,
1,2

)

(1,
4,1

)

(4,
1,1

)

(1,
1,4

)

configuration (cart, orders, frontend)

150

200

250

300

95
th

 p
er

ce
nt

ile
 la

te
nc

y
(m

s)

SLO target
measured latency

(b) Tail latency of orders workflow for various
resource scaling configurations. The configu-
ration suggested by the optimization of CPU
utilization thresholds is (1,1,2) i.e one pod for
cart, one pod for orders and two pods for fron-
tend. All other microservices are provisioned
with one pod.

Fig. 10: Optimization of CPU utilization thresholds for effi-
cient resource scaling with a workload of 30 concurrent clients,
and SLO target 240 ms for 95th percentile latency of orders
workflow.

and their desired CPU utilization values, when only one pod
is allocated to each microservice. Based on Equation 1, the
optimal resource scaling option is to allocate an additional
pod to the frontend microservice. As shown in Figure 10
(b), we validate the optimality of this resource scaling option
by comparing the tail latency of orders workflow for various
possible resource scaling configurations. We observe that the
resource scaling configuration suggested by our optimization
technique is able to meet the performance SLO target while
allocating minimum number of pods in total.

VIII. CONCLUSIONS AND FUTURE WORK

We present the performance characterization and modeling
of containerized microservices in the cloud. Our modeling ap-
proach utilizes machine learning and multi-layer data collected
from the cloud environment to predict the end-to-end tail
latency of microservice workflows even in the presence cloud
induced performance interference. We also demonstrate the
feasibility of utilizing the proposed models in making efficient
resource scaling decisions. We envision that our performance
modeling and resource scaling optimization approach can en-
able cloud platforms to automatically scale microservice-based
applications based on user-provided performance SLO targets.

This will remove the burden of determining resource utiliza-
tion thresholds for numerous microservices from the cloud
users, which is prevalent in existing cloud platforms. In future,
we will extend our work to include diverse microservice-based
applications with different resource bottlenecks. We will also
evaluate the effectiveness of the proposed resource scaling
system in the face of dynamic workloads.

ACKNOWLEDGMENT

Results presented in this paper were obtained using the
Chameleon testbed supported by the National Science Foun-
dation. The research is partially supported by NSF CREST
Grant HRD-1736209. We thank the anonymous reviewers for
their many suggestions for improving this paper. In particular
we thank our shepherd, Prof. Maarten van Steen.

REFERENCES

[1] Amazon elastic container service. https://aws.amazon.
com/ecs/.

[2] Amazon elastic container service for kubernetes. https:
//aws.amazon.com/eks/.

[3] Chameleon: A configurable experimental environ-
ment for large-scale cloud research. https://www.
chameleoncloud.org.

[4] Docker stats. https://docs.docker.com/engine/reference/
commandline/stats/.

[5] Google app engine flexible environment. https://cloud.
google.com/appengine/docs/flexible/.

[6] Google Kubernetes engine. https://cloud.google.com/
kubernetes-engine/.

[7] Kubernetes horizontal autoscaling. https://kubernetes.
io/docs/tasks/run-application/horizontal-pod-autoscale/
#algorithm-details.

[8] Kubernetes: Production-grade container orchestration.
https://kubernetes.io/.

[9] Locust: An open source load testing tool. https://locust.
io.

[10] Microservices: an application revolution powered
by the cloud. https://azure.microsoft.com/en-us/blog/
microservices-an-application-revolution-powered-by-the-cloud/.

[11] Project calico. https://www.projectcalico.org/.
[12] Scikit-learn: Machine learning in python. http://

scikit-learn.org/stable/.
[13] Scipy optimization library. https://docs.scipy.org/doc/

scipy/reference/generated/scipy.optimize.minimize.html.
[14] Sockshop microservice demo application. https://

microservices-demo.github.io.
[15] virt-top. https://linux.die.net/man/1/virt-top.
[16] Weave scope. https://www.weave.works/docs/scope/

latest/introducing/.
[17] C. M. Aderaldo, N. C. Mendona, C. Pahl, and

P. Jamshidi. Benchmark requirements for microservices
architecture research. In IEEE/ACM 1st International
Workshop on Establishing the Community-Wide Infras-
tructure for Architecture-Based Software Engineering
(ECASE), 2017.

[18] A. Balalaie, A. Heydarnoori, and P. Jamshidi. Microser-
vices architecture enables devops: Migration to a cloud-
native architecture. IEEE Software, 33(3), 2016.

[19] S. Barakat. Monitoring and analysis of microservices
performance. Journal of Computer Science and Control
Systems, 10:19–22, 05 2017.

[20] R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior
point algorithm for large-scale nonlinear programming.
SIAM J. on Optimization, 9(4):877–900, Apr. 1999.

[21] X. Chen, L. Rupprecht, R. Osman, P. Pietzuch, F. Fran-
ciosi, and W. Knottenbelt. Cloudscope: Diagnosing
and managing performance interference in multi-tenant
clouds. In 2015 IEEE 23rd International Symposium
on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2015.

[22] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara,
F. Montesi, R. Mustafin, and L. Safina. Microservices:
yesterday, today, and tomorrow. In Present and Ulterior
Software Engineering, pages 195–216. Springer, 2017.

[23] S. Eranian. perfmon2: the hardware-based perfor-
mance monitoring interface for linux. http://perfmon2.
sourceforge.net/.

[24] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and
M. Villari. Open issues in scheduling microservices in
the cloud. IEEE Cloud Computing, 3(5):81–88, 2016.

[25] I. Giannakopoulos, D. Tsoumakos, and N. Koziris. To-
wards an adaptive, fully automated performance mod-
eling methodology for cloud applications. In IEEE
International Conference on Cloud Engineering (IC2E),
2018.

[26] M. Gribaudo, M. Iacono, and D. Manini. Performance
evaluation of massively distributed microservices based
applications. In European Council for Modelling and
Simulation (ECMS), 2017.

[27] Z. Guo, S. McDirmid, M. Yang, L. Zhuang, P. Zhang,
Y. Luo, T. Bergan, M. Musuvathi, Z. Zhang, and L. Zhou.
Failure recovery: When the cure is worse than the dis-
ease. In Presented as part of the 14th Workshop on Hot
Topics in Operating Systems, Santa Ana Pueblo, NM,
2013. USENIX.

[28] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Ry-
balkin, and C. Yan. Speeding up distributed request-
response workflows. In Proceedings of the ACM SIG-
COMM 2013 Conference on SIGCOMM, 2013.

[29] D. Jiang, G. Pierre, and C.-H. Chi. Autonomous resource
provisioning for multi-service web applications. In Pro-
ceedings of the 19th ACM International Conference on
World wide web (WWW), 2010.

[30] G. Kakivaya, L. Xun, R. Hasha, S. B. Ahsan, T. Pfleiger,
R. Sinha, A. Gupta, M. Tarta, M. Fussell, V. Modi,
M. Mohsin, R. Kong, A. Ahuja, O. Platon, A. Wun,
M. Snider, C. Daniel, D. Mastrian, Y. Li, A. Rao,
V. Kidambi, R. Wang, A. Ram, S. Shivaprakash, R. Nair,
A. Warwick, B. S. Narasimman, M. Lin, J. Chen, A. B.
Mhatre, P. Subbarayalu, M. Coskun, and I. Gupta. Ser-
vice fabric: A distributed platform for building microser-

vices in the cloud. In Proceedings of the Thirteenth
EuroSys Conference, 2018.

[31] P. Lama and X. Zhou. Autonomic provisioning with
self-adaptive neural fuzzy control for percentile-based
delay guarantee. ACM Transactions on Autonomous and
Adaptive Systems, 31 pages, under 2nd reviewing after
revision, 2011.

[32] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble.
Tales of the tail: Hardware, os, and application-level
sources of tail latency. In Proceedings of the ACM
Symposium on Cloud Computing (SoCC), 2014.

[33] J. D. McCalpin. Memory bandwidth and machine
balance in current high performance computers. IEEE
computer society technical committee on computer ar-
chitecture (TCCA) newsletter, 2(19–25), 1995.

[34] N. Meinshausen and P. Bhlmann. Stability selection.
Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology), 72(4):417 – 473, 8 2010.

[35] D. Merkel. Docker: lightweight linux containers for
consistent development and deployment. Linux Journal,
2014(239):2, 2014.

[36] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and
J. Wilkes. AGILE: Elastic distributed resource scaling
for infrastructure-as-a-service. In Proceedings of the
10th International Conference on Autonomic Computing
(ICAC), 2013.

[37] J. Rao and C.-Z. Xu. Online capacity identification of
multi-tier Websites using hardware performance coun-
ters. IEEE Trans. on Parallel and Distributed Systems,
2009.

[38] R. Singh, U. Sharma, E. Cecchet, and P. Shenoy. Au-
tonomic mix-aware provisioning for non-stationary data
center workloads. In Proc. IEEE Int’l Conf. on Auto-
nomic Computing (ICAC), pages 21–30, 2010.

[39] L. Suresh, P. Bodik, I. Menache, M. Canini, and F. Ciucu.
Distributed resource management across process bound-
aries. In Proceedings of the 2017 Symposium on Cloud
Computing-SoCC’17. ACM Press, 2017.

[40] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and
A. Tantawi. An analytical model for multi-tier internet
services and its applications. In Proceedings of the ACM
SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, 2005.

[41] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and
T. Wood. Agile dynamic provisioning of multi-tier
internet applications. ACM Trans. Auton. Adapt. Syst.,
3(1), Mar. 2008.

[42] M. Wajahat, A. Gandhi, A. Karve, and A. Kochut. Using
machine learning for black-box autoscaling. In 2016
Seventh International Green and Sustainable Computing
Conference (IGSC), 2016.

[43] L. Wang, J. Xu, H. A. Duran-Limon, and M. Zhao. Qos-
driven cloud resource management through fuzzy model
predictive control. In IEEE International Conference on
Autonomic Computing (ICAC), 2015.

[44] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bobtail:

Avoiding long tails in the cloud. In Presented as part
of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13), 2013.

[45] Q. Zhang, L. Cherkasova, and E. Smirni. A regression-
based analytic model for dynamic resource provisioning
of multi-tier Internet applications. In Proc. IEEE Int’l
Conference on Autonomic Computing (ICAC), 2007.

[46] Y. Zhang, D. Meisner, J. Mars, and L. Tang. Treadmill:
Attributing the source of tail latency through precise load
testing and statistical inference. In ACM/IEEE 43rd An-
nual International Symposium on Computer Architecture
(ISCA), 2016.

