
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y 1

Cree: a Performant Tool for Safety Analysis of
Administrative Temporal Role-Based Access

Control (ATRBAC) Policies
Jonathan Shahen, Jianwei Niu, and Mahesh Tripunitara

Abstract—Access control deals with the roles and privileges to which a user is authorized, and is an important aspect of the security
of a system. As enterprise access control systems need to scale to several users, roles and privileges, it is common for access control
models to support delegation: a trusted security administrator is able to give semi-trusted users the ability to change portions of the
authorization state. With delegation comes the danger that semi-trusted users, perhaps in collusion, may effect a state that violates
enterprise policy, which in turn results in the problem called safety analysis, which is regarded as a fundamental and technically
challenging problem in access control. Safety analysis is used by a trusted security administrator to answer “what if” questions before
she grants privileges to a semi-trusted user. Safety analysis has been studied for various access control schemes in the literature; we
address safety analysis in the context of Administrative Temporal Role-Based Access Control (ATRBAC), an administrative model for
TRBAC, which is an extension to the traditional RBAC. ATRBAC has new features, which introduce new technical challenges for safety
analysis: (i) a time-dimension: two new components in each administrative rule that specify in which time periods an administrative
action may be effected, and a user is authorized to a role, and, (ii) two new kinds of rules for whether a role is enabled for administrative
action. We propose a software tool, which we call Cree, for safety analysis of ATRBAC policies. In Cree we reduce ATRBAC-Safety to
model checking and use an off-the-shelf model checker, NuSMV. The foundation for Cree is the observation from our prior work that
ATRBAC safety is PSPACE-complete. Along with an efficient reduction to model checking, we include in Cree four techniques to further
improve performance: Polynomial Time Solving when possible, Forward and Backwards Pruning, Abstraction Refinement, and Bound
Estimation. These are inspired by prior work, but our algorithms are different in that they address the new challenges that ATRBAC
introduces. We discuss our design of Cree, and the results of a thorough empirical assessment across our approach, and five other
prior tools for ATRBAC safety. Our results suggest that there are input classes for which Cree outperforms existing tools, and for the
remainder, Cree’s performance is no worse. We have made Cree available as open-source for public download.

Index Terms—Safety Analysis, Access Control, Verification, Computer Security, Computational Complexity.

F

1 INTRODUCTION

A CCESS control deals with whether a principal may
exercise a privilege on a resource; e.g. whether the user

Alice is allowed to exercise the ‘read’ privilege on a file. It is
an important aspect of the security of a system. Whether an
attempted access is permitted is customarily specified in an
access control policy. Such a policy may change over time;
for example, Alice may, at some later time, lose the ‘read’
privilege to a file that she possesses.

Effecting and intuiting the consequences of changes to
an access control policy is called administration. An aspect
of administration is delegation, with which a trusted admin-
istrator empowers another principal to change the policy in
limited ways. Delegation is used so administrative efficiency
can scale with the size of an access control system. For
example, a trusted administrator may delegate to a user Bob
the ability to add users within his team, to a project Bob
owns. Thus, Bob is able to control which members of his
team can access the resources of a particular project without
requiring assistance from a trusted administrator.

With delegation arises the need for safety analysis, which

• J. Shahen and M. Tripunitara are with the Department of Electrical and
Computer Engineering, University of Waterloo, Canada. J. Niu is with
the Department of Computer Science, University of Texas at San Antonio.
E-mail: {jmshahen, tripunit}@uwaterloo.ca, jianwei.niu@utsa.edu

Manuscript received x; revised y.

has been recognized as a fundamental problem in access
control since the work of Harrison et al. [1]. Safety analysis
asks, in the presence of delegation, whether some partially
trusted users may effect changes to the authorization policy
in a manner that a desirable security property is violated.

Safety analysis has been addressed for various access
control schemes in the literature. Our focus is safety anal-
ysis in the context of Administrative Temporal Role-Based
Access Control (ATRBAC) [2]. ATRBAC is an administra-
tive scheme for Temporal Role-Based Access Control (TR-
BAC). TRBAC is Role-Based Access Control (RBAC) with
temporal-extensions. In RBAC, rather than assigning a user
directly to a permission, we adopt the indirection of a role.
A user is authorized to a set of roles, and each role is
authorized to a set permissions. The temporal extensions
that TRBAC adds to RBAC constrain the time intervals
that (i) a user may exercise a privilege, and, (ii) a role
may be active. In addition, ATRBAC constrains the time
intervals that (iii) an administrative action can change the
authorization policy. (See Section 2 for a more details.)

An instance of the safety analysis decision problem
comprises the following three inputs. A concrete example
of the scheme we consider, ATRBAC, is in Section 2.
(1) Start State – an instance of an access control policy, i.e.,

which users currently have what privileges or roles.
(2) State Change Rules – set of administrative rules by

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on September 03,2020 at 19:09:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y 2

which a policy can change, e.g., rule: 〈Bob may grant
users membership to Bob’s Project if that user is a
member of Bob’s team〉.

(3) Security Query – a statement that can judge if the sys-
tem is secure or insecure; typically whether a particular
user possesses a particular privilege. Examples: “Can
Alice get write access to Payroll”, “Can Bob adopt the
role of Administrator”, and “Any user have read access
to New Project and write access to Public Repository.”
An instance of safety analysis is ‘TRUE’ if the security

query can never become true, i.e., the system is indeed safe,
and ‘FALSE’ otherwise. The utility of such analysis is that
a trusted administrator can assess whether the current, or a
prospective, set of authorizations and delegations may lead
to a violation of a desirable security property. She can then
modify it if indeed such a violation may result.

ATRBAC-Safety is an important and non-trivial problem.
We discuss this in the context of a concrete example for
ATRBAC in Section 2 after we have presented the details
of ATRBAC and safety-analysis in its context (see the para-
graph titled, “The example, revisited” towards the end of
that section). Here we provide a broader discussion.

Jones [3] discusses why safety analysis can be a technical
challenge: it is in the difference in the manner in which
administrative rules and security properties are specified.
Administrative rules are “phrased in a procedural form”,
while security properties are “formulated as predicates.”
“Though procedural definitions make individual system
state transitions easy to understand and to implement, they
combine to form a system that exhibits complex behaviour.
It is difficult to intuit and to express the behaviour of a
procedurally defined system.” [3] As in the case of other
access control schemes, security queries in ATRBAC-Safety
are in predicate form and the rules are in procedural form.

In addition to this difference in the manner in which
rules and properties are specified, there is the issue of scale.
Enterprise policies can be large and thereby preclude man-
ual safety analysis. For example, prior work [4] discusses
an ARBAC policy, i.e., without the additional features of
ATRBAC, of a financial company which comprises 1363
roles and 8885 rules. Such a policy is likely too large for
manual safety analysis. We seek an automated approach.

Given the above discussions on the technical challenges
that underlie safety analysis in general, one may ask what
makes safety analysis in ATRBAC, the scheme on which
we focus, a particular challenge. That is, what technical
challenges does our work specifically address that prior
work on safety analysis, for example, in the context of
ARBAC, does not? ATRBAC introduces new syntactic con-
structs with associated semantics. We need safety analysis
to “catch up” with these new constructs. As an example
from the literature, Harrison et al. [1] originally proposed
an administrative scheme for the access matrix model, and
safety analysis results for it. Their work establishes that for
their scheme, safety is undecidable. Sandhu [5] syntactically
extends their work with the Monotonic Typed Access Matrix
(MTAM) model. Safety analysis for MTAM, as it turns
out, is decidable. The new features in ATRBAC are: (i)
an administrative rule that specifies time periods during
which (a) an administrative action may be effected, and,
(b) a user is authorized to a role, and, (ii) two new kinds

of administrative rules that are used to enable and disable
administrative roles. (See Section 2 for a comprehensive
description of ATRBAC.) It is unclear as to the manner in
which these new features impact safety analysis. Our prior
conference paper [6] establishes that the problem remains in
PSPACE, and proposes an approach based on reduction to
safety analysis in ARBAC. In this work, we leverage the “in
PSPACE” result in a different manner: we reduce ATRBAC-
safety directly to model-checking. As our work establishes
(see Section 6), and as we hypothesized at the start of
this work, this approach is more efficient in practice. There
are a number of technical innovations we have devised in
carrying out this reduction, and complementing it with op-
timizations (see Section 5.) While these are inspired by prior
work, they need to be custom to ATRBAC. Nonetheless, our
work in turn may be directly useful to future schemes, or at
the minimum, provide inspiration on general directions as
prior work has for this work.

Layout The remainder of this paper is organized as fol-
lows. In the next section, we formalize and discuss the prob-
lem that this work addresses, ATRBAC-safety. In Section 3,
we discuss relevant prior work. In Section 4, we provide
an overview of our work and contributions. In Section 5,
we introduce our tool Cree and discuss the reduction to
Model Checking and four optimizations that are inspired
by, but different from, prior work: Polynomial Time Solving
when possible, Static Pruning, Abstraction Refinement, and
Bound Estimation. In Section 6, we discuss our empirical
assessment and results across Cree, and five other prior
tools. We conclude with Section 7.

2 ATRBAC-SAFETY

In this section, we describe ATRBAC, and then pose the
ATRBAC-safety problem. We do this in stages. We first in-
troduce RBAC, ARBAC and a version of ARBAC-safety that
is relevant to ATRBAC-safety. Then, we describe TRBAC,
ATRBAC and ATRBAC-safety.

We then clarify that various versions of ATRBAC- and
ARBAC-safety are addressed in the literature, and discuss
the choices we have made with regards to the various
features of the problem. Specifically, that we have chosen
the most general of each feature.
2.1 RBAC, ARBAC and ARBAC-Safety
ATRBAC addresses temporal extensions to RBAC and AR-
BAC. In this section we discuss RBAC, ARBAC and the
version of safety analysis in ARBAC that we call ARBAC-
safety that is relevant to our work on ATRBAC-safety.

RBAC RBAC [7] is used to specify an authorization policy
— who has access to what. An RBAC policy, in the context
of this work, is a set UA, the user–role assignment relation. An
instance of UA is a set of pairs of the form 〈u, r〉. A user u is
authorized to the role r if and only if 〈u, r〉 ∈ UA. RBAC has
other constructs, such as role-permission assignment and a
role-hierarchy, that are not relevant to ATRBAC-safety with
which we deal in this paper. Indeed, a role-hierarchy can
be flattened as a pre-processing step without affecting the
correctness or efficiency of our techniques.

ARBAC ARBAC is a syntax for specifying the ways in
which an RBAC policy may change. As our work deals with

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on September 03,2020 at 19:09:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y 3

Alice Bob

Director (D) Surgeon (S)
Consulting

Physician (CP)
Physician (P)

5
a
m

-
8
p
m a

lw
ay

s 8 am
- no

on

8
a
m

-
5
p
m

Rule Type Rule

t_can_assign 〈D, 8 am – 9 am, S ∧ ¬P, 8 am – noon, CP〉
t_can_revoke 〈D, 8 am – 9 am, true, 8 am – noon, P〉
t_can_enable 〈TRUE, 6 am – 8 am, true, 8 am – 5 pm, D〉
t_can_disable No Rules

Fig. 1: An example of the Start State component (referred to
as TUA and RS) of a TRBAC policy is the figure on top. No
roles are enabled. Example ATRBAC administrative rules
are in the table. An ATRBAC policy contains: TUA, RS, and
a rule set. Figure 2 contains examples of safety queries.

the UA component of an RBAC policy only, by ARBAC we
mean its URA portion [8], via which users are authorized to
and revoked from roles.

There are only two ways in which an instance of UA may
change. One is the addition of an entry 〈u, r〉 to UA, which
is the authorization of u to r. The other is the removal of
an entry 〈u, r〉, which is the revocation of u’s authorization
to r. An instance of ARBAC is a collection of rules, and
addresses two issues with regards to such changes to UA:
who may carry out one of those operations, and under what
conditions.

A set of can_assign rules control additions to UA, and a
set of can_revoke rules control removals from UA. A
can_assign rule is of the form 〈a,C, t〉, where a, t are roles
and C is a precondition. The precondition C is a set in
which each entry is either a role r, or its negation, ¬r. The
semantics of the can_assign rule 〈a,C, t〉 is that a member of
the role a may assign a user u to the role t provided u is
already a member of every non-negated role in C and is not
a member of any negated role in C .

In a can_assign rule 〈a,C, t〉, the role a is called an
administrative role and the role t is called a target role. A
can_revoke rule has the form 〈a, t〉 where both a and t are
roles. The semantics is that a member of the administrative
role a is allowed to revoke a user’s authorization from
the target role t. The reason that a can_revoke rule has no
precondition is that revocation is seen as an inherently safe
operation [8].

ARBAC-safety We now discuss a version of safety anal-
ysis in ARBAC that is relevant to our work. We call it
ARBAC-safety. As our work deals with user-role authoriza-
tion only, ARBAC-safety refers to that aspect only. More
general versions of safety analysis for ARBAC have been
considered in the literature [9], that reconcile not only
the user-role authorizations, but also role-role relationships.
Nevertheless, all the versions of safety analysis in ARBAC
of which we are aware lie in the same complexity-class —
they are all PSPACE-complete.

ARBAC-safety is a state-reachability problem. It takes
three inputs:

(1) A query, which is a pair 〈u, r〉, user u and role r.
(2) A current- or start-state, which is an instance of UA.
(3) A state-change specification, which is an instance of

ARBAC, i.e., instances of can_assign and can_revoke rules.
The output of the ARBAC-safety instance is ‘FALSE,’ if there
exists a state that is reachable from the start-state in which
the user u from the query is a member of the role r from the
query. Otherwise, the output is ‘TRUE.’

ARBAC-safety is known to be PSPACE-complete [10].
Several techniques have been proposed to address instances
that are likely to arise in practice. For example, Gofman et
al. [11] propose a tool called RBAC-PAT, and Jayaraman et
al. [4] propose a tool called Mohawk.

2.2 TRBAC, ATRBAC and ATRBAC-Safety

We now discuss the temporal extensions to RBAC and
ARBAC that give us TRBAC [12] and ATRBAC respectively.
We also the problem ATRBAC-safety. We first present a
model and encoding of time that is the basis for the syntax
for temporality in ATRBAC. The version we adopt is the
same as prior work [2].

Time An intuition for an instance in time, m, can be
thought of as represented by a real number. An example
of real number time is the Unix timestamp, which is num-
ber of seconds since 00:00:00 Jan. 1, 1970 [13]. A time-slot
represents some duration of time, and is represented as a
non-negative integer. In an instance of ATRBAC-safety, no
two distinct time-slots overlap in time. Given time-slots i, j
where i < j, the time-slot j is associated with a duration of
time that occurs later than time-slot i. A time-instant m falls
within a time-slot.

We assume that the earliest time-slot with which an
instance of ATRBAC-safety is associated is 0, and there is
some integer, Tmax, such that Tmax − 1 is the latest time-
slot that pertains to the ATRBAC-safety instance. We discuss
how time progresses under ATRBAC-safety below.

A generalization of a time-slot is a time-interval. A time-
interval is a pair of integers 〈i, j〉 where i ≤ j. It represents
the set of time-slots {i, i + 1, . . . , j}. We say that a time-
instant m falls within a time-interval if m falls within one of
the time-slots in that time-interval.

The mindset that underlies the above notions for time is
that each time-slot represents some realistic, recurring, fixed
time period, such as “9 AM – 10 AM.” Example timeslots
for Ti are: 9 AM to 5 PM (typical work day), Monday at 9
AM to Friday at 5 PM (typical work week), Jan 1 to March
31 (first quarter of the fiscal year). In ATRBAC, the current
instance of time dictates what permissions a user has and
what rules an administrator can execute. The particular, the
actual time periods, to which time-slots in an instance of
ATRBAC-safety map, are irrelevant to the analysis.

TRBAC From the standpoint of our work, TRBAC gen-
eralizes RBAC in two, temporal ways. (1) The set UA is
generalized to TUA, each of whose elements is a triple
〈u, r, lu,r〉, where lu,r is a time-interval. The semantics is
that u is a member of r during the time-interval lu,r only. (2)
Each role r that appears in TUA is annotated with a time-
interval, lr . We say that lr is the time-interval during which
the role r is enabled. The semantics is that outside of the

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on September 03,2020 at 19:09:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y 4

Alice Bob

Director Surgeon
Consulting
Physician

Physician

5
a
m

-
8
p
m a

lw
ay

s 8 am
- no

on

8
a
m

-
5
p
m

Alice Bob

Director Surgeon
Consulting
Physician

Physician

5
a
m

-
8
p
m a

lw
ay

s 8 am
- no

on

8
a
m

-
5
p
m

Alice Bob

Director Surgeon
Consulting
Physician

Physician

5
a
m

-
8
p
m a

lw
ay

s 8 am
- no

on

n
o
o
n
-
5
p
m

Alice enables Director
Alice revokes Bob from

Physician for 8 am - noon

. . .

Fig. 2: An example ATRBAC safety query for the policy in Figure 1. We show that the following security query is true,
provided we adopt a version of the problem that does not require the target role to be enabled. Security Query: “Can Bob
ever become a member of the role Consulting Physician during 8 am to noon?” This security query is shown to be true
if there exists a path from the initial TRBAC state to a TRBAC state where Bob is a member of the Consulting Physician
role for the timeslot representing 8 am to noon. There are many TRBAC states where this security query is true, and many
paths exists to reach these states. Our example path above starts with Alice enabling the Director role (shown shaded).
This allows Alice to carry out administrative tasks. Alice then exercises the t_can_revoke rule so Bob is revoked from the
Physician role for 8 am – noon. She then is able to assign him to the Consulting Physician role for 8 am – noon. This last
state-change is not shown in the figure. “Can Bob ever become a member of the role Consulting Physician during 1 pm to
5 pm?,” is an example of a safety query that is not true because there exists no paths from the initial TRBAC state to a state
where the query is true.

time-interval lr, no user can exercise a permission that she
acquires via the role r. The set of all pairs, 〈r, lr〉, is denoted
RS.

Thus, a TRBAC policy, and therefore a state in the
verification problem we consider, is a 3-tuple, 〈TUA,RS,m〉,
where TUA and RS are as described above, and m is a time-
instant. A user u is authorized to a role r at the time-instant,
m, if and only if there exists an entry 〈u, r, lu,r〉 ∈ TUA such
that m is within lu,r . The entries in RS matter when a user
attempts to make an administrative change, i.e., a change
to the authorization state. We discuss this under ATRBAC
below.

ATRBAC ATRBAC generalizes ARBAC by providing
rules for changes to TRBAC policies. As we discuss under
“Versions of the problem” below, the version we discuss
generalizes prior versions. Under ATRBAC, there are two
ways in which a state, which is a TRBAC policy, can change:
(1) via an administrative action, or, (2) the passage of time.

Under (1), four kinds of administrative actions are pos-
sible to a TRBAC policy, 〈TUA,RS,m〉. It is possible to
add an entry to, and remove an entry from TUA, and it
is possible to add an entry to, and remove an entry from
RS. The first two kinds of changes are called assign and
revoke administrative actions, and the next two are called
role enabling and disabling administrative actions. We have
the corresponding sets of tuples t_can_assign, t_can_revoke,
t_can_enable, and t_can_disable. (As in Uzun et al. [2], we
employ the prefix “t_” to distinguish clearly that these are
rules for ATRBAC, rather than ARBAC.)

Each such set contains 5-tuples. Each tuple is of the
form 〈Ca, La, Ct, Lt, t〉. The first two components, Ca, La

are conditions on the administrator that seeks to effect the
action. The next two components, Ct, Lt, are conditions
on the user or role to which the rule pertains. The last
component, t, is the target-role; the role that is affected by
the action. Ca is either the mnemonic ‘true,’ or a condition,
i.e., a set of negated and non-negated roles. La is a set of
time-intervals. We specify their semantics below for each
kind of administrative rule. The entry t is the target role,

i.e., the role that is affected by the firing of the rule. Ct

is a role-condition similar to Ca above. There are some
important differences between Ca and Ct, however, and we
discuss these below for each kind of rule. Lt is a set of time-
intervals, similar to La above. We discuss the semantics of
Lt below for each kind of rule as well.

Such a 5-tuple 〈Ca, La, Ct, Lt, t〉 applies when an admin-
istrator, say, Alice, attempts an administrative action at a
particular time-instant, m. Each administrative action takes
inputs, one of which is the administrator that attempts it,
i.e., Alice, and others that we discuss below. In Figure 1 we
show an example ATRBAC policy and in Figure 2 we show
it in the context of a security query. The example in Figure 1
is of 2 users that exist in a hospital. There are 4 roles, where
only the Director role is able to act under delegation.

Role enabling: the inputs are Alice, a target role t, and
a set of time-intervals, L. Alice succeeds in her attempt
at enabling the role t if and only if there exists an entry
〈Ca, La, Ct, Lt, t〉 ∈ t_can_enable for which all of the follow-
ing are true.

(1) The time-instant, m, at which Alice attempts the
action falls within some time-interval in La. (2) Alice and the
current time-instant m together satisfy the administrative
condition, Ca. That is, if p is a non-negated role in Ca, then
Alice is a member of p at time-instant m in the current state,
〈TUA,RS,m〉, and p is enabled at the time-instant m. If n is
a negated role in Ca, then either Alice is not a member of
n at time-instant m in the current state, or the role n is not
enabled, or both. If Ca is the mnemonic ‘true,’ then the rule
may fire provided m is within some time-interval in La.
(3) The set of time-intervals L is contained within the set
of time-intervals Lt. That is, for every time-interval l ∈ L,
there exists a time-interval lt ∈ Lt such that l is within lt.
(4) The set of time-intervals L satisfies the target condition
Ct for every l ∈ L. That is, if p is a non-negated role in Ct,
then for every l ∈ L, p is enabled during the time-interval
l, in the current-state, i.e., RS. And if n is a negated role in
Ct, then for every l ∈ L, n is not enabled during l, in the
current-state.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on September 03,2020 at 19:09:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y 5

The effect of a successful role enabling by Alice is that
the component RS of the current-state is updated as follows
to get a new state: RS← RS ∪ {〈t, l〉 : l ∈ L}.
Example: In Figure 1 Alice must first enable the role of
“Director” so that she can later be allowed to exercise rules
where the “Director” role is required by the administra-
tive condition, Ca. Alice may exercise the t_can_enable rule
during 6 am – 8 am as she satisfies Ca during that time.
Once she enables it, Alice must wait before she exercises the
t_can_revoke rule, where the “Director” role is required by
t_can_revoke’s Ca, until the current time falls within 8 am –
noon.

Role disabling: the inputs are Alice, a target role t, and a
set of time-intervals, L. Alice succeeds in disabling t via
her action at time-instant m if and only if there exists an
entry 〈Ca, La, Ct, Lt, t〉 ∈ t_can_disable for which all of the
following are true.

(1) The current time-instant, m, falls within some
time-interval in La. (2) Alice and the current time-instant, m,
together satisfy the administrative condition, Ca. (3) The set
of time-intervals, L, is contained within the set of time-in-
tervals, Lt. (4) The set of time-intervals L satisfies the target
condition Ct for every l ∈ L.

The effect of a successful role disabling by Alice is that
the component RS of the current-state is updated as follows
to get a new state: RS← RS \ {〈t, l〉 : l ∈ L}.
User-role assignment: the inputs are the administrator, Al-
ice, a user u, a target role t to which she seeks to assign
u, and a set of time-intervals L. The assignment action that
she attempts at time-instant m succeeds if and only if there
exists an entry 〈Ca, La, Ct, Lt, t〉 ∈ t_can_assign for which
all of the following are true.

(1) The current time-instant, m, falls within some
time-interval in La. (2) Alice and the current time-instant, m,
together satisfy the administrative condition, Ca. (3) The set
of time-intervals, L, is contained within the set of time-in-
tervals, Lt. (4) The user u and the set of time-intervals L
satisfy the target condition Ct for every l ∈ L. That is, if p
is a non-negated role in Ct, then u is a member of p during
every time-interval l ∈ L. If n is a negated role in Ct, then
u is not a member of n in any time-interval l ∈ L. If Ct

is the mnemonic ‘true,’ then there are no constraints on the
current role-memberships of the user u.

The effect of a successful assignment by Alice is that the
component TUA of the current-state is updated as follows
to get a new state: TUA← TUA ∪ {〈u, t, l〉 : l ∈ L}.
Example: The example in Figure 1 shows that Alice is able
to assign the “Consulting Physician” role to Bob during 8
am – noon. She is able to exercise this rule because Bob has
the role “Surgeon,” and does not have the role “Physician”
during 8 am – noon, and Alice satisfies the administrative
condition by having the role “Director.”

User-role revocation: the inputs are an administrator Alice,
a user u that she seeks to revoke from a role, a target
role, t from which she seeks to revoke u, and a set of
time-intervals, L. The revocation action she attempts at
some time-instant m succeeds if and only if there exists an
entry 〈Ca, La, Ct, Lt, t〉 ∈ t_can_revoke for which all of the
following are true.

(1) The current time-instant, m, falls within some
time-interval in La. (2) Alice and the current time-instant, m,
together satisfy the administrative condition, Ca. (3) The set
of time-intervals, L, is contained within the set of time-in-
tervals, Lt. (4) The user u and the set of time-intervals L
satisfy the target condition Ct for every l ∈ L.

The effect of a successful revocation by Alice is that the
component TUA of the current-state is updated as follows
to get a new state: TUA← TUA \ {〈u, t, l〉 : l ∈ L}.
Time-change: Another way that a state, 〈TUA,RS,m〉, can
change is in its time component, m. The manner in which
passage of time is modelled [2], [14] is simply by allow-
ing the m component to increase without any change to
the other two components, TUA and RS. That is, a pos-
sible state-change is from 〈TUA,RS,m〉 to a new state,
〈TUA,RS,m′〉, where m′ > m.

An issue we clarify in this regard of passage of time is
whether, once we reach the time-slot Tmax − 1 to which an
instance of ATRBAC-safety pertains, the time-slot 0 recurs,
followed by time-slot 1 and so on, forever. The assumption
in prior work [2] is that it does. The reason regards the se-
mantics of a time-slot — it maps to some realistic, recurring
period of time. We refer to this property as periodicity, and
revisit it in the context of the software tools.

Example: Time periodicity is what allows the rules in Fig-
ure 1 to be described by just the time of day. The intention
of the rules is that they are contained within a day. Thus
when a day ends and the next day begins, the rules should
still apply to the new day.

ATRBAC-safety The safety analysis problem for ATRBAC
takes three inputs. (1) A query, 〈u,C, L, t〉, user u, condition
C (set of negated and non-negated roles), set of time-
intervals L, and t is some units of time. (2) A start-state,
〈TUA,RS,m〉, which is an instance of TRBAC. (3) A state-
change specification, which is an instance of ATRBAC, i.e.,
four sets of rules, t_can_assign, t_can_revoke, t_can_enable,
and t_can_disable.

The output is ‘FALSE,’ if there exists a TRBAC state
〈TUA′, RS′, m′〉 that is reachable from the start-state in
which: (i) the user u is a member of every non-negated role
in C in every time-interval in L, and is not a member of any
negated role in C in any time-interval in L, (ii) every non-
negated role in C is enabled for every time-interval in L,
and no negated role in C is enabled in any time-interval in
L, and, (iii) the time-instant m′ of this state is within t time-
units of the time-instant of the start-state. Otherwise, the
output is ‘TRUE.’ We point out that it is possible to specify t
that is large enough that the query pertains to any time-slot.

In Figure 2 we discuss two ATRBAC safety questions:
“could Bob become a member of the role Consulting Physi-
cian between 8 am and noon?” and “could Bob become a
member of the role Consulting Physician between 1 pm and
5 pm?”. As the caption of the figure discusses, the former
is true, provided we do not require the role Consulting
Physician to be enabled when Bob becomes a member of
it. The latter question is not true.

Versions of the problem Different versions of ATRBAC-
safety appear in relevant prior work. In [6], we created a
general version from prior works of Uzun et.al [2], and

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on September 03,2020 at 19:09:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y 6

Ranise et.al. [14]. We use this general version of the problem
as input into our empirical implementation, Cree.

We previously provided a Reduction Toolkit [6], which
allows for this general version to be reduced to previous
version of ATRBAC-Safety and to a version of ARBAC-
Safety. Here we outline the input format of the general
version of ATRBAC-Safety we support.
(1) Rule Types: t_can_assign, t_can_revoke, t_can_enable, and

t_can_disable
(2) Rule Format: 〈Ra, T ia, Ct, T st, Rt〉; where:
• Administrator Condition Ra – single role or TRUE
• Admin Time Condition Tia – a time interval in the

format of ta − tb where a, b ∈ Z and 0 ≤ a ≤ b
• Precondition Ct – a list of positive and negative roles

(eg: r1 ∧ ¬r2 ∧ r4)
• Target Timeslot Array Tst – a list of time slots (eg:
t2, t3, t5, t6)

• Target Role Rt – single role
(3) Initial Condition: empty TUA and empty RS
(4) Security Query: 〈tg, Rg〉
• Goal Timeslot tg – single timeslot
• Goal Roles Rg – a list of goal roles

The example, revisited We now revisit the example from
Figure 1 and Figure 2 to illustrate the non-triviality of
ATRBAC-safety analysis for even such a small example.
The system has three rules only, and each rule is essential.
For example, if the t_can_assign rule is removed, then no
user can be assigned to the CP role except by a super-
user who operates outside the constraints that the ATRBAC
rules impose, which is exactly the scalability issue that
such delegation schemes as ATRBAC address. Thus, even
though the removal of any rule, in this example, is sufficient
to ensure that “could Bob become a member of the role
Consulting Physician between 8 am and noon?” is not true,
such removal is not a viable way to address the unsafety
of the system for that query in this example. One way
to ensure that the system is safe for both the queries we
discuss above is to change the “8 am – noon” component
of the t_can_revoke rule to “8 am – 5 pm.” Another way is
to change the “8 am – noon” constraint in the t_can_assign
rule to “8 am – 5 pm,” and also change the current state so
all surgeons, including Bob, are authorized to the Surgeon
role during 8 am – 5 pm, rather than 8 am – noon only. We
suggest that identifying that such a change simultaneously
renders the system safe for both queries, and also from any
other queries of interest, is not necessarily straightforward.
We point out also that the above discussion suggests that it
is not straightforward to label a system as “under-” or “over-
constrained.” Changing the “8 am – noon” constraint in the
t_can_assign rule to “8 am – 5 pm” can be seen as easing
a constraint. But the consequence of then precluding Bob
from certain privileges can be seen as further constraining
the system.

3 PRIOR WORK

Prior work that is relevant to ours can be dichotomized into:
(a) work on access control models and schemes, such as
RBAC and its variants, and, (b) work on safety and security
analysis in the context of such models and schemes. A

comprehensive survey of these is well beyond the scope of
this work. In this section, we discuss prior work from the
standpoint of safety analysis, (b).

The work of Harrison et al. [1], in the context of the HRU
access matrix model, is, to our knowledge, the first to pose
and address safety analysis in the context of access control.
Since that work, there has been work, for example, on safety
analysis of variants of the HRU model [1], and other models
such as those for trust management and negotiation [15],
[16], usage control models [17], [18], and schemes based
on RBAC [7], [19], including ARBAC [8], [20]. There has
been work also in generalizing safety analysis to so-called
security analysis [21], and the use of safety and security
analysis to characterize the expressive power of authoriza-
tion schemes [22], [23]. Extensions have been made with
regards to ATRBAC safety in [24], most notably the security
properties: availability, liveness, and mutual exclusion of
privileges for TRBAC.

As for ATRBAC-safety, the topic of this work, we are
aware of the following prior work. Our prior work, [6], iden-
tifies that safety analysis of ATRBAC is PSPACE-complete.
In addition, it proposes an approach for safety analysis of
ATRBAC based on reduction to ARBAC and then use of a
prior solver for ARBAC-safety; we call this prior approach
Mohawk+T. Our approach in this work, Cree, was designed
and created after we gathered experience with Mohawk+T.
Our experience with Mohawk+T suggested that directly
reducing to model-checking in conjunction with other im-
provements, such as static pruning/abstraction refinemen-
t/bound estimation, would yield better performance. Thus,
the work in this paper is different from our prior work [6]
– the two propose different tools, with different approaches
to the problem.

The work of Uzun et al. [2] is, to our knowledge, the
first work to propose ATRBAC and pose the safety-analysis
problem for it. In addition, that work discusses the design
of two software tools, TREDROLE and TREDRULE to address
instances in practice. These tools are part of our empirical
assessment in Section 6. The work of Ranise et al. [14]
syntactically generalizes some aspects of the version of
ATRBAC from Uzun et al. [2]. It then presents a result on the
computational-complexity of ATRBAC-safety — it proves
that the problem is decidable. It then discusses the design,
construction and evaluation of 2 different software tools,
ASASPTIME-SA and ASASPTIME-NSA, to address problem in-
stances in practice. These tools are also part of our empirical
assessment in Section 6.

Safety analysis has been applied to ATRBAC where role
hierarchies are allowed in [25], [26], [27]. Safety analysis
with role hierarchy was also been applied to ARBAC in
[26]. This suggests a limitation in Cree — we do not directly
address role hierarchy. We hypothesize that an enhancement
to our reduction is possible that incorporates role hierarchy
and still yields an efficient approach in practice. We leave
this for future work.

Techniques used in this paper include static pruning, ab-
straction refinement, and bound estimation. For these tech-
niques, we are inspired by prior work on ARBAC-Safety,
but with different algorithms to address the new technical
challenges posed by ATRBAC’s new features. Jha et.al [10]
propose forward and backward pruning for ARBAC-safety.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on September 03,2020 at 19:09:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y 7

Start
Static

Pruning
Abstraction
Refinement

Bound
Estimation

Reduce
to Model
Checking

NuSMV Result

REACHABLE or
UNREACHABLE →

Quick Decision Making (Secure or Insecure)

Abstraction Refinment Loop

←UNREACHABLE

Fig. 3: A high level overview of Cree operates. The Polynomial Time Solving are run at each of the white circles. We
translate the Model checking results as follows: REACHABLE inputs are UNSAFE; UNREACHABLE inputs are SAFE.

This was augmented by Jayaraman et.al [4] with abstrac-
tion refinement and bound estimation. In [19], Ferrara
et.al. provides methods of pruning and bound estima-
tions for ARBAC-Safety. Ferrara extends the forward- and
backwards-pruning from Jha et.al [4]. They include more
exclusion rules, to create a more aggressive static pruning
method. Ferrara’s bound estimation found an upper bound
on the number of users to be the number of administrative
users plus 1. We implement our own versions of static
pruning, abstraction refinement, and bound estimation.
This is due to the difference between ARBAC-Safety and
ATRBAC-Safety. ATRBAC-Safety includes timeslot/time-
intervals within to can_assign and can_revoke rules, and
introduces 2 new rule types: t_can_enable and t_can_disable.

4 OUR WORK

In prior work [6], we propose a tool called Mohawk+T
for ATRBAC-Safety. Mohawk+T reduces ATRBAC-Safety
to ARBAC-Safety, and then uses the solver, Mohawk [4],
that was built for ARBAC-Safety. Our empirical assessment
of Mohawk+T suggests that while it is superior to prior
tools for some classes of inputs, there are other classes of
inputs where the other tools outperform it. This leads us
to ask: is there a fundamentally different design we could
adopt for ATRBAC-Safety that results in a tool that is more
performant? Our answer to this question is ‘yes,’ and Cree,
which we discuss in this work, is such a tool.

In Cree, we reduce ATRBAC-safety directly to model
checking. Such a direct reduction gives us performance
gains. In addition, it gives us an avenue to design and imple-
ment other performance improvements: Polynomial Time
Solving when possible, forward- and backward-pruning,
abstraction refinement, and bound estimation (see Section 5
for the reduction to model checking, and these algorithms).
Thus, Cree is a “from scratch,” new tool for ATRBAC-safety,
and as our empirical results in Section 6 establish, it is
superior to both Mohawk+T and other prior tools for several
classes of inputs, and no worse for others. The format of
ATRBAC-safety that Cree supports is the same as the one
Mohawk+T formalized, and this version generalizes the
tools from prior work [2], [14] (see Table 1 in [6]).

Static pruning is a method of reducing the input access
control policy by removing rules/roles/timeslots from the
policy, which has been shown to greatly improve per-
formance. Static pruning has been discussed for ARBAC
in [4], [10], [19], [20], but ATRBAC introduces not only
time-intervals/timeslots to each can_assign and can_revoke
rule, but introduces 2 new rule types t_can_enable and
t_can_disable. These additions require new algorithms for

static pruning. We outline our forward and backwards
pruning techniques in Section 5.2.

Abstraction refinement is an optimization technique
for solving problems by solving sub-problems with posi-
tive one-sided error. Abstraction refinement starts with the
smallest sub-problem, solves the problem and halts if we
get a positive answer (the system is unsafe). Otherwise we
refine the sub-problem and make it bigger by adding rules
and repeat until we halt or have tested a policy equivalent
to the original policy. The hope of abstraction refinement is
that the solution to the original problem can be solved using
only a small percentage of the original problem. Abstraction
refinement allows parallel execution for ATRBAC-Safety.
We have provided our abstraction refinement technique in
Section 5.3.

Our static pruning and abstraction refinement tech-
niques have the ability to produce low complexity ATRBAC-
Safety problems. We leverage this by creating an optimiza-
tion technique called Polynomial Time Solving when possi-
ble. This technique is a set of linear/low-order-polynomial
timed algorithms that are able to quickly solve specific
classes of input of ATRBAC-Safety polices. The class of
randomly generated inputs, created in [2], is able to be
solved almost exclusively using this technique. When this
technique is able to solve our policy, we are able to skip
running the model checker, which has high overhead cost.
We discuss our Polynomial Time Solving algorithms in
Section 5.1.

The previous 3 techniques can be used in conjunction
with all ATRBAC-Safety solvers. Our last technique can
only be applied to solvers where maximum path length is
taken into consideration. Our last optimization technique is
Bound Estimation. Where, given an ATRBAC-Safety policy,
we calculate an upper-bound on the path length for the
smallest path from initial state to goal state. The upper
bound from Bound Estimation can be used by the model
checker NuSMV with no modification. We discuss out
Bound Estimation upper bound calculation in Section 5.4.

Cree is written in Java and is able to run on all mod-
ern operating systems. We have provided Cree for public
download [28].

5 CREE

We now discuss our tool, Cree. Cree’s ATRBAC-safety input
format is the same as that of Mohawk+T [6] which in turn
generalizes those of prior tools [2], [14]. Following is a list
of how the rules and security query are formatted.

Security Query The query is a tuple 〈sq, Rq〉, where sq
is a timeslot and Rq is a set of positive roles. The security

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on September 03,2020 at 19:09:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y 8

query is satisfied if any user u is assigned to every role in
Rq for the time-slot sq .

Initial Conditions All ATRBAC-safety instances have the
same initial conditions. These are: (1) The user–role assign-
ment set, TUA, is empty, and (2) The role–enablement set,
RS, is empty.

Rules Every rule takes the format 〈a, La, Ct, St, t〉. (1) a
is an administrative role or the mnemonic ‘TRUE’. (2) La is
a time-interval, ex: t1 − t5, or the mnemonic ’Tall’. (3) Ct

is a set of positive and/or negative roles. (4) St is a set of
time-slots. (5) t is a role that is to be assigned/revoked/en-
abled/disabled. Please refer to Section 2.2 to compare for-
mats of the implemented and theoretical rules.

Cree solves instances of ATRBAC-safety by reducing
directly to Model Checking and then running a state-of-the-
art model checker, NuSMV [29]. This gives us more control
over, and insight into, input instances that are harder for our
previous tool (Mohawk+T) when compared to prior tools.
In the next few sections, we present a number of techniques
that exploit this stronger control we have. Specifically, we
are able to design and incorporate a number of complemen-
tary techniques into Cree that make it considerably more
scalable than without those techniques. How Cree operates
is shown in Figure 3. The following sub-sections discuss the
constituent modules in Cree that are shown in the figure.

5.1 Polynomial Time Solving when possible for
ATRBAC-Safety

In practice there are many classes of input where the solu-
tion can be determined by using a polynomial timed algo-
rithm. The choice to perform these quick solvers frequently
throughout Cree’s operation provides many opportunities
of increased performance by identifying classes of inputs
and skipping labour intensive analysis. The quick solvers
run at before and after each modification to the ATRBAC-
safety policy.

The following Polynomial Time Solving are performed
at each white bubble in Figure 3. The order of execution is
important.

(1) Empty Query Role Array Such an input is unsafe
when no roles are provided in the query’s role array. The
result is true for all instances because all users satisfy the
condition, regardless of the roles they are members of. Run
time of Θ(1).

(2) No t_can_assign Rules for the Security Query’s Role
Array and Timeslot Such an input is safe because the
initial conditions have no users assigned to any roles and
with no t_can_assign rules to obtain the query’s roles, for the
query’s timeslot, it is impossible for a user to obtain the goal
roles. Run time of Θ(|t_can_assign|).

(3) No “Truly-Startable” t_can_assign Rules A “Truly-
Startable” rule is one that has Ct = TRUE and a =
TRUE. This means that a Truly-Startable t_can_assign rule
is satisfied in the initial conditions. If no Truly-Startable
t_can_assign rules exists then the initial user-role assignment
TUA can never be changed. Thus, such an input is safe. Run
time of Θ(|t_can_assign|).

5.2 Static Pruning

Static Pruning is a method of removing Rules, Roles, and
Timeslots from an ATRBAC-safety policy that are irrele-
vant for safety analysis. Static pruning is one of the first
steps to be performed, because reducing policy size can
increase performance and minimizes memory usage for
all operations following. Figure 4 shows an example of
a policy that can be made smaller without affecting the
safety analysis. Specifically, the policy has several rules
(highlighted in red) that can be removed without impacting
safety analysis. We are able to remove these rules using
a combination of forward and backwards pruning. This,
in turn, can improve performance by reducing the mem-
ory size required to store each state, and by reducing the
number of states needed to search. Static pruning has been
discussed in ARBAC [4], [10], [19], [20]. We have modified
the methods of forward and backwards pruning, from [4],
[10], [20], to update the algorithms to introduction time into
t_can_assign/t_can_revoke rules and to apply similar pruning
methods to t_can_enable/t_can_disable rules (which do not
exists in ARBAC). Both pruning techniques can be turned
off in Cree, but due to empirical evidence, both techniques
were used to obtain the best results in Section 6.

// Goal S t a t e : CE1 (admin) −> CE3 (a) −> CA6(a) −>
CA6(user) −> CA4(u) −> CR2(u) −> CA2(u) −>
CA6(u)

Query : t2 , [r3 , r4]
CanAssign :

/∗CA1∗/ <TRUE, t1−t3 , TRUE, [t2 , t 3] , r1>
/∗CA2∗/ <r3 , t1−t3 , r2 & NOT r3 , [t2 , t 3] , r4>
/∗CA3∗/ <r1 , t1−t3 , r1 , [t2 , t 3] , r5>
/∗CA4∗/ <r3 , t1−t3 , r3 , [t 1] , r2>
/∗CA5∗/ <r1 , t1−t3 , r5 & NOT r3 , [t2 , t 3] , r6>
/∗CA6∗/ <TRUE, t1−t3 , TRUE, [t1 , t2 , t3] , r3>

CanRevoke :
/∗CR1∗/ <TRUE, t1−t3 , TRUE, [t1 , t 2] , r1>
/∗CR2∗/ <TRUE, t1−t3 , TRUE, [t1 , t2 , t3] , r3>
/∗CR3∗/ <TRUE, t1−t3 , TRUE, [t1 , t2 , t3] , r2>

CanEnable :
/∗CE1∗/ <TRUE, t1−t2 , TRUE, [t 1] , r1>
/∗CE2∗/ <TRUE, t1−t2 , TRUE, [t 2] , r1>
/∗CE3∗/ <TRUE, t1−t2 , r1 & NOT r2 , [t1] , r3>
/∗CE4∗/ <TRUE, t1−t2 , r1 , [t 1] , r2>

CanDisable :
/∗CD1∗/ <TRUE, t1−t2 , TRUE, [t 1] , r1>
/∗CD2∗/ <TRUE, t1−t2 , TRUE, [t 1] , r2>

Fig. 4: An example that shows rules/roles/timeslots, that
can be removed without changing the security of the policy.
All lines highlighted in red are not required to show that
this policy is unsafe. Only the lines highlighted in green are
required. Removing all unnecessary rules/roles/timeslots
with static pruning ensures: (1) the pruned policy’s size will
be less than or equal to the input policy’s size, and (2) the
safety response remains unchanged.

Forward Pruning is a technique that disregards the secu-
rity query and focuses on removing rules that are unable to
fire. It does this by looking at every rule in the policy and
verifying if the admin role is assignable and enable-able,
and if each positive role in Ct is assignable. If any of these
are false then the rule cannot fire and we can safely remove
the rule from the policy. The previous assertion is only true
if we start from an empty state, or if we start from a state
where every user has obtained their roles using the current
set of rules.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on September 03,2020 at 19:09:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y 9

ATRBAC forward pruning is in P, our algorithm has
a run time of Θ(|rules|). Our forward pruning algorithm
differs from previous works by introducing the t_can_enable
t_can_disable pruning and adding the condition that admin-
istrator roles must also be enable-able. The forward pruning
algorithm is supplied in the supplemental material.

Backward Pruning focuses on the security query, 〈Rq, sq〉,
to determine which rules it can add to a new policy P ′′.
Where the security is true if there exists a state transition
path from the initial condition to a user who is assigned all
roles in the set Rq for the timeslot sq . Backward pruning
collects all t_can_assign rules, 〈a, La, Ct, St, t〉, where the
target role t equals a role in the security query’s role set
Rq and the timeslot array St contains the security query’s
timeslot sq . These initial t_can_assign rules is the set of rules
that is required to obtain each of the goal roles in the security
query. Not all of the rules in this set are necessary to satis-
fying the security query, but a subset of these t_can_assign
rules are required. From this initial set we extract all of the
conditions that each rule requires in order to fire: (1) all
positive roles in Ct must be satisfied for all timeslots in St,
(2) all negated roles in Ct, that also appear as a target role
in some t_can_assign rule, must be revocable (if possible),
(3) all administrator roles a must be assigned (matching
t_can_assign rule(s)) and enabled (matching t_can_enable
rule(s)). We generate the first t_can_assign set, extract all
conditions that the rules require to fire, and then find all
corresponding rules that can satisfy these conditions. We
loop this process until all conditions are possibly met; some
policies have conditions that cannot be satisfied because no
satisfying rule exists.

ATRBAC backward pruning is in P, our algorithm has
a run time of Θ(|rules|2), in the worst case. Our backward
pruning algorithm differs from previous works by introduc-
ing t_can_enable/t_can_disable rules, and the more difficult
addition of introducing time to every satisfying condition.
The algorithm for backward pruning is provided in the
supplementary material.

5.3 Abstraction Refinement
Abstraction Refinement is a technique that can increase per-
formance of safety analysis for insecure policies. It uses the
assumption that only a small portion of an ATRBAC policy
is required to determine if a policy is insecure. Abstraction
refinement works by creating a very small policy P0 from a
policy P , then performing safety analysis. If the small policy
P0 is insecure, then we know P is insecure and can halt
early. If P0 is secure, then we don’t know if P is secure or
insecure and thus we create a slightly bigger policy P1 and
repeat. We repeat until we find a policy that is insecure or
we do a safety analysis on the original policy P .

In static pruning we removed rules that could not fire
in any situation and rules not relevant to the safety query,
this ensures the security is unchanged due to pruning for
all instances of ATRBAC-safety. Abstraction refinement has
1-sided error, if a sub-policy Pi is insecure, then the original
policy is also insecure. For secure policies we must perform
security analysis on all sub-policies and the original in order
to confirm that the policy is secure.

In this section we devise a strategy to produce a small
sub-policy and then iteratively increase the policy size by

ALGORITHM 1: Step 0 for Abstraction Refinement

Input : P ← Cree Policy
Result: P0 ← Reduced Cree Policy (Size: |P0| ≤ |P |)
Func AbsRef_Step0(P)

P0 ← Empty Policy; P0.query← 〈sq, Rq〉 ← P .query;
R0 ← {P.Rq}; T0 ← {P.sq};
for r ∈ all rules in P do

if (r.t ∈ R0) ∧ (∃s|s ∈ r.St ∧ s ∈ T0) then
P0 ← P0.rules ∪ r ;

adding more rules from the original policy until the original
policy is reproduced without any irrelevant rules.

Abstraction Refinement improves performance for in-
stances where only a small subset of rules are required to
prove that a policy is insecure. In cases where a large set
of rules is required for an insecure result, or if the policy
is secure, this option would have a negative impact on the
run-time. We can eliminate the negative performance impact
by running on a computer able to solve the original policy
in parallel with the abstraction refinement steps; halting as
soon as one finishes. Abstraction Refinement can be turned
off and is suggested if the ATRBAC-safety policy is assumed
secure.

The aggressiveness of the initial policy and the iterative
steps can effect performance. More aggressive algorithms
reduce the number of abstraction refinement steps by al-
lowing more rules with each iteration, thus speeding up
performance for secure policies. Less aggressive algorithms
reduce the load on the solver by producing smaller and
easier to solve sub-policies, thus speeding up performance
for insecure policies. We have found a balance that works
for the empirical testing set we used. To have an apples-to-
apples comparison, Cree was run with abstraction refine-
ment turned on for all empirical results reported in this
paper. All algorithms below run in polynomial time, and the
number of abstraction refinement steps is bounded linearly
by the number of rules. Thus Abstraction Refinement is in
P.

Step 0: Initialization and Smallest Policy
Algorithm 1 shows how that initial abstraction refine-

ment step is performed and the smallest sub-policy, P0, is
created. P0 is a new empty policy, with the same security
query as the policy. We first create 2 variables: R0 and T0.
R0 = {all of the roles from the Query}. T0 = {timeslot from
the Query}. P0 contains the set of rules from the original
policy P if the rule satisfies the following conditions: the
target role is in R0, and at least 1 time-slot s in the target
timeslot array must be in T0 (∃s|s ∈ r.St ∧ s ∈ T0).

Empirically we have found that this semi-aggressive
algorithm performed best. Other initial algorithms consid-
ered were: limiting rule selection to only CanAssign rules,
removing the timeslot restriction (using the ARBAC abstrac-
tion refinement initial step in [4]), and skipping the initial
step and using the first refinement iteration.

Step N: Iterative Refinement
Algorithm 2 shows how iterative sub-policies are cre-

ated from the previous sub-policy, PN−1, and the original
ATRBAC-safety policy P . The initial abstraction refinement
step uses the security query to add all rules from P where

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on September 03,2020 at 19:09:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y 10

ALGORITHM 2: N th Step for Abstraction Refinement
Input :
• P and PN−1 – Cree Policies
• RN−1 – Set of Roles from PN−1

• TN−1 – Set of Timeslots from PN−1

Result: PN - Reduced Policy (Size: |PN−1| ≤ |PN | ≤ |P |)
Func AbsRef_StepN(P, PN−1, RN−1, TN−1)

PN .query← PN−1.query; RN ← RN−1; TN ← TN−1;
for r ∈ all rules from PN−1 do

RN ← RN ∪ r.t ∪ r.Ct ∪ r.a;
TN ← TN ∪ r.St ∪ r.La;

for r′ ∈ all rules from P do
if (r′.t ∈ RN) ∧ (∃s|s ∈ r′.St ∧ s ∈ TN) then

PN ← PN .rules ∪ r′

t ∈ Rq and sq ∈ St. Each iterative step after that increases
the set of target roles to include all roles administrative a
and roles in precondition Ct from all rules in the previous
abstraction refinement step. Increasing the target role set
and the timeslot set increases the number of rules that can
be added to the new policy.

Algorithm 2 is a semi-aggressive algorithm and was
chosen based on empirical evidence. A less aggressive alter-
native is similar to Tightening 3 in Section 5.4, where RN is
split into 2 sets, roles that need to be assigned and roles that
require enablement. A more aggressive alternative would
be the same as the ARBAC scheme in [4], where there is no
time constraint.

Step M: Termination The last refinement step occurs
when |PM−1.rules| = |PM .rules|. This usually occurs
when RM−1 ∩ RM = ∅ and TM−1 ∩ TM = ∅. Note that
|PM .rules| ≤ |P.rules|. |PM .rules| < |P.rules| can occur
when there exists rules in P that do not help a user satisfy
the security query. These rules will not be added to PM .
Table 1 shows the abstraction refinement steps when applied
to the example policy in Figure 4. In that example, the rules
CA3 and CA5 are not in the last abstraction step. If we had
performed static pruning before abstraction refinement we
could have reduced the size of the last policy by 5 rules
(rules highlighted in red in Figure 4).

5.4 Bound Estimation

NuSMV has two modes of operation: Symbolic Model
Checking (SMC) and Bounded Model Checking (BMC).
SMC mode combines states that share aspects in the state
tree and utilizes these groups to traverse the tree more
efficiently then using single step. BMC mode uses single
step to traverse the state tree, but limits the distance from
the initial state. In BMC mode, an additional integer input,
called a bound, is required by NuSMV. This bound changes
the problem to whether an unsafe state can be reached
within that diameter from the start-state. To ensure we get
a correct answer to our original safety query, we require a
bound significantly large enough that if unsafe states exists,
then at minimum 1 unsafe state must exist within the state
tree with our fixed bound. Tightening this bound allows
NuSMV to run more efficiently in BMC mode.

Part of Cree is an algorithm for estimating this bound;
we call this algorithm bound estimation. It works by cal-
culating an initial upper bound and then applying what

Step i ∆Ri ∆Ti ∆ Rules

0 r3, r4 t2 CA2,CA6,CR2,CE3
1 r2, r1 t1, t3 CA1,CA4,CR1,CR3,CE1,

CE2,CE4,CD1,CD2
2 ∅ ∅ ∅

TABLE 1: Example Abstraction Refinement steps using Al-
gorithm 1 for step 0 and Algorithm 2 for steps 1 and
2. Notice that the columns are showing the difference in
sets from the current step and the previous step. It should
be noted that the policies below will be reduced if static
pruning is applied before step 0.

we call tightenings that reduce this upper-bound, while
maintaining the invariant that the original input is safe if
and only if it is safe with our estimate for the bound. In
practice, the initial estimate tends to be loose upper bound,
with the tightenings gradually decreasing it.

Cree has the option to use SMC mode and forgo bound
estimation; all results in Section 6 were found using BMC
mode and bound estimation. If we used only the initial
upper bound, we found that SMC was empirically quicker
on average, but when utilizing tightening 3 we found BMC
mode to be on average the quicker mode.

Initial Upper Bound calculates the length of a simple
path that visits every possible state in an ATRBAC policy.
In the context of ATRBAC, a state represents the user-role
assignments and the role-enablement status; i.e. which users
are assigned to which roles for which timeslots and which
roles are enabled for which timeslots. We can represent
this state as a binary string, where the length is equal to
|User Role Assignments| + |Role Enablement| = (|Users| ·
|Roles|·|Timeslots|)+(|Roles|·|Timeslots|). From this we can
calculate the maximum simple path to visit every state; the
length of this simple path is calculated using 2|Binary String|. If
the User-Role Assignment or the Role Enablement status
had a more complex state than on/off, then the above
calculation for simple path would not be accurate.

We require a Users variable to compute the initial upper
bound. If there exists no known limit to the number of users
to a specific ATRBAC policy, then we can use the worst
case: in a single state we have 1 user able to represent every
role for every single timeslot at once (|Users| = |Roles| ·
|Timeslots|), thus we have the ability to solve every possible
administration condition in an ATRBAC policy.

User-Role-Timeslot Assignment:
u = |Users| · |Roles| · |Timeslots|

= (|Roles| · |Timeslots|) · |Roles| · |Timeslots|
Role-Timeslot Enablement:
r = |Roles| · |Timeslots|

Upper Bound:

d0 = 2u+r = 2(|Roles|2·|Timeslots|2)+(|Roles|·|Timeslots|)

Tightening 1: Required Number of Users The initial
upper-bound uses the variable Users, which is not defined
in a standard ATRBAC policy, thus it uses a large value
which it knows will contain enough users. This tightening
defines a tighter upper-bound by reducing the number of
users required. It is important to notice that in an ATRBAC
policy User A cannot effect User B’s assignments unless
User A acts as an administrator; i.e. there is no condition

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on September 03,2020 at 19:09:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y 11

in our CA/CR rule which checks which roles another
user is assigned to, we only have conditions checking the
administrator and the target user. From this observation
we can limit the number of users that we need to satisfy
in our simple path to the number of administrative roles
(1 user per role) and 1 user target user. To intuit the
proof, in the worst case we require that each administra-
tor role be assigned to a different user (i.e. t_can_assign
rules: 〈TRUE, tall,¬a1 ∧ ¬a2 ∧ . . . ∧ ¬am, [t0], a0〉 . . ., no
t_can_revoke rules). This means that we require the number
of administrator users and 1 target user. We then calculate
the length of a simple path to visit all states for all users,
as this ensures that if an unsafe state exists then it will exist
within our bound. This result is similar to that reported in
[19], for the number of users required for analysis in an
ARBAC policy.

|Users| = |Admin Roles|+ 1

d1 = 2(|Admin Roles|+2)·|Roles|·|Timeslots|

Tightening 2: Leveraging Initial Conditions The initial
conditions of an ATRBAC policy is that every user is as-
signed with no roles and every role is disabled. We can infer
that the only rules that can change the initial condition is
t_can_assign and t_can_enable rules. To get an intuitive sense
of how this is true, imagine every possible user to a system
as a 3 dimensional array: users×roles×time-slots 7→ {0, 1},
and imagine whether a role is enabled or disabled as a
2 dimensional array: roles×time-slots 7→ {0, 1}. The first
array, a specific user u, role r, and timeslot t point to a binary
variable stating whether user u is a member of role r for the
timeslot t. The second array is similar but indicating if a role
is enabled for a specific timeslot. The initial state sets all of
these binary values to 0, thus any call to any t_can_revoke
or t_can_disable will not change the state (−−→

init
0 −−→

CR
0).

In order for t_can_revoke or t_can_disable to change state,
a specific t_can_assign or t_can_enable call must precede it
(−−→
init

0 −−→
CA

1 −−→
CR

0). From this intuitive knowledge, and
by building on tightening 1, we obtain the upper bound in
Figure 5.

From our observation, we can limit the number of roles
and the number of time slots required by tightening 1. For
User-Role-Timeslot Assignment, we only require to visit
roles which we might need to obtain as a target user or
as an administrator. The list of roles can be found in the set
(CA-CR-Positive-Precondition∪Admin-Roles∪Goal-Roles).
We can limit this set to only include roles which can actually
be assigned using t_can_assign rules in the ATRBAC policy
(i.e. target roles of all t_can_assign rules). We can limit the
number of timeslots required to be the set of target timeslots
which appear in all t_can_assign rules. We then perform
similar tightenings for the Role-Timeslot Enablement path.

Tightening 3: Longest Simple Path to Goal State Tight-
ening 3 uses the longest simple path from the initial state
to the goal state as a means of measuring the maximum
number of role/timeslots required by the target user, each
admin user, and for the role enablement. Using these roles,
we calculate our bound as the length of a simple path which
visits every state.

User-Role-Timeslot Assignment:

|u2| =(|Admin-Roles|+ 1) · |CA-Target-Roles

∩ (CA-CR-Positive-Precondition ∪ Admin-Roles

∪ Goal-Roles)| · |CA-Target-Timeslots|
Role-Timeslot Enablement:

|r2| =|CE-Target-Roles ∩ (CE-CD-Positive-Precondition

∪ Admin-Roles)| · |CE-Target-Timeslots|
Upper Bound:

d2 =2
|u2|+|r2|

Fig. 5: Tightening 2, reduces the required number of roles
and timeslots required by the Assignment and Enablement
portions of the upper bound. By leveraging the initial state
of ATRBAC-safety analysis, we can determine that unless
a t_can_assign rule or t_can_enable is executed, then all
t_can_revoke or t_can_disable rules will not change the state
tree. This allows us to limit the number of roles to only
the role that are required to be assigned and required to be
enabled. We further limit this by only including the roles
that are able to be assigned and able to be enabled. We
limit the timeslots based on just on the t_can_assign and
t_can_enable rules.

To understand the bound in Figure 6, we split the
required state size into three sections: (1) a target user
obtaining the goal roles, (2) other users obtaining required
administrator roles, and (3) having each administer role
enabled at the right time. The longest simple path (LSP) is
calculated by looking at all the rules that assign, or enable,
a specific state (i.e. role a for timeslot t3) and then working
backwards, to collect all rules that a target user require and
returning the longest path. This is similar to backwards
pruning in Section 5.2. We identify rules that might be
required based on the positive preconditions. We do not
consider the assignment or enablement of admin role in the
LSP algorithm, as they are specifically handled in Uadmin

and RE.
The intuition behind tightening 3 is to minimize the

number of role/timeslots variables in our state repre-
sentation for the upper bound on the minimum length
path from initial to goal state. Tightening 1 reduced the
number of users required to solve all ATRBAC policies.
From tightening 2, we recognize that if there exists no
t_can_assign/t_can_enable rule for a particular role/timeslot,
then we can remove it from our state regardless if there
exists a t_can_revoke t_can_disable rule. Tightening 3 utilizes
these observations and applies them based on the security
query.

We notice that to achieve our goal state, we must have a
user contain all goal roles for the goal timeslot. In order for
this user to obtain the above, we must have administrator
users able to execute rules on the user. In order for an
administrator user to fire a rule, their administrative role
must be enabled. This is how the three steps above were
created. For each step we determined the longest shortest
path (LSP) from the initial conditions to a state (i.e. user
obtaining a single goal role for the goal timeslot, or an admin
user obtaining their admin role for a specific timeslot). We
use the LSP algorithm to determine the maximum number
of role/timeslots to keep for that particular user. The exact

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on September 03,2020 at 19:09:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y 12

Ugoal =

∣∣∣∣∣∣CA-Target-Roles
⋂ ⋃

g∈Goal-Roles

Get-Roles[LSPCA,CR(g)]

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

⋃
g∈Goal-Roles

Get-Timeslots[LSPCA,CR(g)]

∣∣∣∣∣∣
Uadmins =

 ∑
a∈Admin-Roles

|CA-Target-Roles ∩ Get-Roles[LSPCA,CR(a)]| · |Get-Timeslots[LSPCA,CR(a)]|


RE =

∣∣∣∣∣∣CE-Target-Roles
⋂ ⋃

a∈Admin-Roles

Get-Roles[LSPCE,CD(a)]

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

⋃
a∈Admin-Roles

Get-Timeslots[LSPCE,CD(a)]

∣∣∣∣∣∣
d3 =2

Ugoal+Uadmins+RE

Fig. 6: Tightening 3, calculates a diameter for NuSMV by returning the longest simple path for a user to be assigned
the goal roles and for all required administrative roles to be assigned and enabled. We calculate the possible simple
paths by working backwards from the goal roles and using rule preconditions to add rules to the simple path. The
function LSPx,y(r) returns a set of rules from the input ATRBAC policy’s t_can_assign/t_can_revoke (x, y = CA,CR) or
t_can_enable/t_can_disable (x, y = CE,CD) sections, that represents the longest simple path to the role r.

roles/timeslots are not important, as we are only using this
as a method of estimating the minimum path length from
the initial state to the goal state, and not actually changing
the underlining TRBAC state.

In the previous 2 tightenings, we assumed each ad-
ministrator user required the same number of states. In
this tightening we calculate the required state size for each
administrator user and add the sizes together (see Uadmins

in Figure 6). In the worst case, we find that all administra-
tive users require the same of role/timeslots and thus see
no improvements from tightening 2. We modify the Role
Enablement state size by limiting the number of roles to
those required to enable the admin roles.

From Figure 6, below we explain the functions used.
Get-Roles() is a polynomial time function that takes a set
of rules and returns the set of roles that contains all target
roles and positive preconditions. Get-Timeslots() is a poly-
nomial time function that takes a set of rules and returns
the set of timeslots that contains all target timeslots. LSP
is a polynomial time algorithm that can be used on the
t_can_assign/t_can_revoke or the t_can_enable/t_can_disable
rulesets, it takes a target role l and returns the set of rules
which is associated with the longest shortest path. The LSP
functions works backwards from the state where a the role
is assigned, or enabled (depends on the ruleset), starts with
the set of rules with target role equal to l, and uses the
preconditions to build a set of rule paths. Since we are
dealing with rule sets, the set size is linearly limited by
the number of rules, and the number of rule sets is limited
linearly by the number of rules.

We have provided a full example of calculating each
tightening in the supplemental material.

5.5 Reduction to Model Checking

A correct reduction from ATRBAC-Safety to Model Check-
ing must ensure: (1) that every state an ATRBAC policy can
reach is reachable by our reduced model, and (2) every state
that our reduced model can reach must be reachable by
the ATRBAC policy. We chose to reduce to model checking
because of the similarities between ATRBAC-safety and
model checking, and to leverage the mature model checking
community for their robust and highly optimized software.

Model checkers have 2 variable types: state variables
and control variables. The state variables have controlled
values, where state transitions dictate future values. Control

variables are left to the model checker to choose a value
for. This allows the model checker to perform optimizations
to dictate which state transitions to pick when a choice is
required.

Our reduced model has 2 state variables: (1) a |users| ×
|roles| × |timeslots| binary array TUA that indicates if a
user is assigned to a role in a specific timeslot, and (2) a
|roles| × |timeslots| binary array RS that indicates if a role
is enabled for a specific timeslot. The value for |roles| is
extracted from the list of all roles in the ATRBAC policy,
|timeslots| is extracted using the polynomial reduction
algorithm to convert time intervals into non-overlapping
timeslots (see Reduction 2 in [6]). We use tightening 1
to calculate the value for |users|. Both TUA and RS are
initialized to false (ATRBAC-safety initial conditions) and
each variable has a state transition where the default case
keeps the current state. TUA and RS accurately represent
the underlining TRBAC state in an ATRBAC policy.

We have 3 control variables that we let the model checker
control:

rule an enumerated integer that can take the value of any
rule in the ATRBAC policy (ex: rule : {CA01, CA02, . . .,
CR01, . . ., CE01, . . ., CD01, . . .};),

user an integer between 1 and the maximum number of
users (|Admin-Roles| + 1, see Section 5.4), to represent
a selected target user, and

admin which is modelled the same as user but is inde-
pendently assigned a value, this represents a selected
admin user.

For each t_can_assign/t_can_revoke rule, we add a state
transition to each affected TUA variable if the admin and
target user satisfy the rule’s condition in the current state.
The model checker is able to change the state of TUA by
assigning values to rule, user, and admin such that:

1) the rule is a t_can_assign or t_can_revoke rule,
2) the user’s values in TUA, in the current state, satisfy the

rule’s preconditions Ct,
3) the admin’s values in TUA, in the current state, satisfy

the rule’s administration condition, and
4) the rule’s administration condition is enabled for at least

1 timeslot in RS, in the current state.

For each t_can_enable/t_can_disable rule, we add a state
transition to each affected RS variable if the admin and
current state satisfy the rule’s condition. The model checker

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on September 03,2020 at 19:09:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y 13

s0start s1

s2 s3

s4 s5 s6

(a) Diagram Model

1 LTLSPEC G ! (u [1] [3] [2] = TRUE & u [1] [1] [2] = TRUE) / / Query : t2 , [r3 , r4]
2 / / User 1 , Ro l e 3 Ass ign / Revoke
3 next (u [1] [3] [1]) := FALSE ;
4 next (u [1] [3] [2]) := case
5 user =1 & r u l e=CA1 & ((u [admin] [1] [1] & e [1] [1]) |(u [admin] [1] [2] & e [1] [2]) |(u [admin] [1] [3] & e

[1] [3])) & (u [user] [2] [2] & u [user] [2] [3]) & ! (u [user] [1] [2] | u [user] [1] [3]) : TRUE ;
6 TRUE : u [1] [3] [2] ;
7 esac ;
8 next (u [1] [3] [3]) := case
9 user =1 & r u l e=CA1 & ((u [admin] [1] [1] & e [1] [1]) |(u [admin] [1] [2] & e [1] [2]) |(u [admin] [1] [3] & e

[1] [3])) & (u [user] [2] [2] & u [user] [2] [3]) & ! (u [user] [1] [2] | u [user] [1] [3]) : TRUE ;
10 TRUE : u [1] [3] [3] ;
11 esac ;
12 / / Ro l e 1 Enab l e / D i s a b l e
13 next (e [1] [1]) := case
14 r u l e=CE2 & (e [4] [1]) & ! (e [2] [1]) : TRUE ;
15 TRUE : e [1] [1] ;
16 esac ;
17 next (e [1] [2]) := FALSE ;
18 next (e [1] [3]) := FALSE ;

(b) SMV Code

Fig. 7: Figure (a) depicts the diagram view of model checking, where s0 is the initial ATRBAC state and each state transition
is effecting a rule r with an admin and target user that satisfy the rule’s admin and target role conditions. States s5 and
s6 are the accepting states, where a user in TUA satisfies the security query. Figure (b) shows a version of (a) using a
small snippet from the reduction of Figure 4 to NuSMV’s model checking language. The TRBAC state is encoded as such:
TUA is defined by u and RS is defined by e in out reduction above. In s0, u and e are set to FALSE, where u is a 3
dimensional array: users× roles× timeslots, and e is a 2 dimensional array: roles× timeslots. The reduction has a rule
for each user/role/timeslot variable. If no rule touches that variable (lines 3,17,18), then the next state value will always
be the initial condition: FALSE. Otherwise, a case statement is used to check the rule/user/admin values to see if the
rule’s conditions are satisfied. The default route for the case statement is to keep their current value. There are 2 parts to
understand in a case statement (line 5): to the left of the colon is the condition to check and the right side is the value we
set when the condition is true. The query on line 1 asks the question “For all future time, will user 1 never be assigned r3
and r4 for timeslot t2?”.

is able to change the state of RS by assigning values to rule,
user, and admin such that:

1) the rule is a t_can_enable or t_can_disable rule,
2) the current state in RS, satisfy the rule’s precondition,
3) the admin’s values in TUA, in the current state, satisfy

the rule’s administration condition, and
4) the rule’s administration condition is enabled for at least

1 timeslot in RS, in the current state.

We can intuit the correctness of the reduction by com-
paring state transitions to rule firings. In an ATRBAC
policy, to fire a rule r the target and admin users must
both satisfy their conditions, and the admin role must
be enabled for the current time of day. If these condi-
tions are true then the TRBAC instance is updated for
the TUA (t_can_assign/t_can_revoke) or the RS variable
(t_can_enable/t_can_disable). The reduced model checks all
conditions except for the check if the admin role is enabled
during the current time. In Section 2.2, we define timeslots to
be periodic, in our reduce model we utilize this to optimize
the model by ignoring time. We are able to achieve this
because we can stay in the current state until the current
time reaches one of the timeslots required to enable the
admin role. Without this optimization, we would require a
time state variable to keep track of the current timeslot and
state transitions to increment, and wrap, to the next timeslot.

In Figure 7, we show a small snippet of the reduc-
tion from Figure 4 to model checking. The state variables
user/admin/rule are defined as above. To save space, TUA
and RS were renamed to u and e respectively. We can under-
stand u and e by their index values: u[user][role][timeslot],
e[role][timeslot]. Figure 7 does not show the variable decla-
ration or initialization, and hides most of the rules for user1
and all rules for user2. The rules to dictate rule enablement

are truncated.
The query on line 1 can be understood as: “Does the

statement after G hold true for all future time instances?”.
We translate the query to model checking by negating the
query “can any user ever obtain the goal roles for the goal
timeslot?”. An optimization to the query is that we force
user1 to be our target user, by limiting our query to “can
u[1] ever obtain the goal roles for the goal timeslot?”.

In Figure 7 each state variable must have a state transi-
tion statement (next or case). Without these statements the
model checker would be able to change the value between
states, thus obtaining states that are unreachable to the
ATRBAC policy. For role×timeslots that are not touched by
a t_can_assign rule, we set the next value in u to FALSE, for
all users, as the value cannot change from the initial value
FALSE. We do the same with e and t_can_enable rules.

The format for state transitions for the TUA variable u
are: (correct user) ∧ (correct rule) ∧ (admin satisfies condi-
tion for any timeslot in interval) ∧ (user satisfies condition
for all timeslots) : TRUE. The format for state transitions
for the RS variable e are: (correct rule) ∧ (admin satisfies
condition for any timeslot in interval) ∧ (e satisfies condition
for all timeslots) : TRUE. Admin and target condition which
are TRUE are satisfied in all states. The last line of each
case statement is the default route, and this prevents state
changes outside of the rules in the ATRBAC policy.

5.6 Performance Considerations
The performance techniques described above are able to
give a performance increase in the best case, and in the
worst case provide extra overhead that decreases overall
performance. In this section we will consider each of the
performance techniques and outline conditions where a
performance increase or decrease is expected.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on September 03,2020 at 19:09:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y 14

The Polynomial Time Solving module of Cree, is op-
timized to run very quickly because they are executed
before each technique. We see a performance increase if the
ATRBAC policy is relatively simple or when running with
abstraction refinement on. We have found that the initial
abstraction refinement steps are able to be solved almost
exclusively using Polynomial Time Solving. We also found
that we do not see any noticeable decrease in performance
if this technique is not able to solve the policy.

Forward pruning is effective when the ATRBAC policy
contains rules that cannot fire. There are a few different
ways that this can be the case for a rule. Forward pruning
has been shown to greatly reduce the policies created in [2].
We see an increase in performance for backwards pruning
if there exists low coupling between the set of goal roles
and the rules which reference them. Backwards pruning
decreases performance if there is high coupling within the
policy, as this results in very few roles/rules/timeslots from
being removed.

A performance increase from abstraction refinement is
only possible for UNSAFE ATRBAC-safety policies. This
due to the one sided error that abstraction refinement im-
plements. If the policy is assumed SAFE, then this feature
should be turned off to increase performance. Parallelizing
abstraction refinement would mitigate the negative effects
on performance for SAFE policies, but this feature was not
implemented in Cree due to time constraints.

The performance considerations for bound estimation
rely on the optimizations of the ATRBAC-Safety solver be-
ing used. Our bound estimation produces an upper bound
which can be exponential in the size of the input. The per-
formance effects of bound estimation relies on the ingenuity
of the solver. Empirically, we have noticed that NuSMV [29],
when running in bounded model checking, is much faster
than its symbolic model checking variant only when given
our upper bound. If only using Tightening 1, we have found
that symbolic model checking was quicker on average.

6 EMPIRICAL ASSESSMENT

We have implemented Cree, and made it available for public
download [28]. In this section, we discuss an empirical as-
sessment we have conducted of Cree, in comparison to five
prior tools for ATRBAC-safety to which we have access. Our
intent with such an empirical assessment is to ask whether
Cree’s design and implementation does indeed result in a
performant tool when compared to prior tools.

We have conducted empirical assessments on the three
benchmark classes from prior work [6]. Our results are
shown in Figure 8, Figure 9, and Figure 10. The curves
interpolate the average of 5 runs. The error-bars show the
standard deviation from the average. The red wavy lines
represent the point where a tool is unable to solve the rest
policies due to timing out or crashing.

Benchmark Class (a) in Figure 8, first presented by [2]
but altered here, are randomized test-cases where:
• Roles subplot: Rules are fixed at 200 and Timeslots at 20.
• Rules subplot: Roles are fixed at 200 and Timeslots at 20.
• Timeslots subplot: Rules and Roles are fixed at 200.
Everything about the rules created in the Benchmark Class
(a) rules are randomized: • Random start and end times

for the administrator time-interval, where start ≤ end time.
• For every role that exists there is a 1

5 chance that it
will be added to the rule’s precondition as a positive role
condition, and 1

5 chance for a negative precondition. These
factors differ from the original code in [2] where there was
an equal probability of 1

3 for each case. The change is to
reduce the number of role preconditions is to allow for more
rules that have zero preconditions, and thus are allowed to
be executed. Without rules with empty preconditions the
query will always be unreachable and thus a safe system.
• The target role is randomized. • The target time-interval
is a set of time-slots and there is a 1

2 probability of a
time-slot being added to the “role-schedule”. • The type of
rule is randomized with a 1

2 probability for t_can_assign or
t_can_revoke. • The administrator is “TRUE”.

Benchmark Class (b) in Figure 9, presented by [14], are
ARBAC policies that have “temporality” randomly added
to them. We would like to thank Ranise et al. for providing
these test-cases for us to use. This set of 13 policies all have
“TRUE” as the administrator and only contain t_can_assign
and t_can_revoke rules.

Benchmark Class (c) in Figure 9, presented by [14], is
generated similarly to Benchmark Class (b) but these rules
allow for arbitrary administrator roles.

In Figure 10, we present testcases taken from [4], which
are ARBAC policies and we convert them to ATRBAC
policies by introducing 1 time-slot and having every rule
associate with that time slot. We first converted this set
in our prior wrok [6]. Given an example ARBAC rule:
〈a,C, t〉, we can convert it with a single time-slot ts such
that the policy still reflects it’s original guarantees on
safety: 〈a, ts, C, ts, t〉. The Mohawk test-cases are split into
3 complexity classes: polynomial time, NP-Complete, and
PSPACE-Complete. This reflects what is contained within
the test-cases:
• Polynomial Time: can_assign and can_revoke rules where

the administrator is “TRUE”, only positive preconditions
for can_assign rules or “TRUE”, and can_revoke rule’s pre-
conditions are “TRUE”.

• NP-Complete: can_assign rules where the administrator
is “TRUE” and preconditions can include positive or
negative roles, or be “TRUE”.

• PSPACE-Complete: can_assign and can_revoke rules where
the administrator is “TRUE” and preconditions can in-
clude positive or negative roles, or be “TRUE”.

For Benchmark Class (a), Figure 8, Cree is within 0.5
seconds of the tools TREDROLE, TREDRULE, and ASASPTIME-SA

and outperforms our prior tool Mohawk+T by almost 6
seconds for the bigger policies. ASASPTIME-NSA was unable
to run most these tests. Cree’s Polynomial Time Solving
when possible is the factor that reduces the run time down
to comparable times to the other software as we are able to
skip the expensive overhead of running the model checker.

For Benchmark Class (b), Figure 9, all tools, except ASASP

TIME-NSA and ASASPTIME-SA, solve the policies within 1
second. This is the only instance where Mohawk+T outper-
forms Cree, but the amount of the order of 10 milliseconds.

For Benchmark Class (c), Figure Figure 9, Cree either
performs the quickest or is tied with the other fastest tool
ASASPTIME-NSA. The only exception to this is the policy
Hospital 4, where Cree performs the worst overall. Note

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on September 03,2020 at 19:09:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y 15

Benchmark Class (a)

100 300 500 700 1,000

0

2

4

6

8

→ Failed

� � � � �� �
� �

�

↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓← ← ← ← ←→

Number of Roles

T
im

e
(s
ec
)

100 300 500 700 1,000

0

2

4

6

8

→ Failed All Tests

↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓� � �
�

�

� � � � �← ← ← ← ←

Number of Rules

10 20 40 60 80 100

0

2

4

6
→ Failed

↑ ↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓ ↓�� �
� �

�

�� � � � �←← ← ← ← ←→

Number of Timeslots

�Cree�Mohawk+T ↑ TRedRole ↓ TRedRule← ASASPTime SA→ ASASPTime NSA

Fig. 8: Results on all tools for Benchmark Class (a). It comprises random input instances from a generator from Uzun et
al. [2]. The curves interpolate averages, and the error-bars show the standard deviation.

c01 c02 c03 c04 c05 c06 c07 c08

0

5

10

����������������↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓← ← ← ← ← ←
← ←

→

→
→ →

→

→

→
→

T
im

e
(s
ec
)

Benchmark Class (b) Tests 1 - 8

c09 c10 c11 c12 c13

0

50

100

150

↑ ↑ ↑ ↑ ↑

↓

↓ ↓ ↓ ↓� � � � �� � � � �← ← ← ← ←
→ →

→

→

→
Benchmark Class (b), Tests 9 - 13

H1 H3 H5 H10 U1 U5 U7 U10

0

20

40

���
�

����

�

�
��
�
���
�
���

���

�

����������������→→→→→→→→→→→→→→→→→→→
→

Benchmark Class (c)

Fig. 9: Results for Benchmark Class (b) (two graphs to the left), and Benchmark Class (c) (right). These comprise input
instances from the work of Ranise et al. [14].

3,
15

5,
25

20
,
10

0

40
,
20

0

20
0,

10
00

50
0,

25
00

4k
,
20

k

20
k,

80
k

30
k,

12
0k

40
k,

20
0k

0

50

100

150

200

250 ↑ & ↓ Timeout

→ Failed,

← Failed

������������������
�
�

↑ ↑ ↑ ↑ ↑ ↑
↑

↓ ↓ ↓ ↓ ↓ ↓
↓

←←←←←

←

←

←

→→→→→

→

→

Num. of Roles, Num. of Rules

T
im

e
(s

ec
)

Test Suite 1 (Poly–time Verifiable)

3,
15

5,
25

20
,
10

0

40
,
20

0

20
0,

10
00

50
0,

25
00

4k
,
20

k

20
k,

80
k

30
k,

12
0k

40
k,

20
0k

0

25

50

75

100
↑ & ↓ Timeout → Failed

← Failed

�������
�
�

�

����������↑ ↑ ↑↓ ↓ ↓←←←←←←←→→→
→
→→

Num. of Roles, Num. of Rules

Test Suite 2 (NP–Complete)

3,
15

5,
25

20
,
10

0

40
,
20

0

20
0,

10
00

50
0,

25
00

4k
,
20

k

20
k,

80
k

30
k,

12
0k

40
k,

20
0k

0

25

50

75

100 ↑ & ↓ Timeout

← & → Failed

�������
�
�

�

����������↑ ↑ ↑↓ ↓ ↓←←←←←←→→→
→→→

Num. of Roles, Num. of Rules

Test Suite 3 (PSPACE–Complete)

Fig. 10: Mohawk inputs [4] converted to ATRBAC-safety instances using one time-slot. Test Suite 1 are inputs with non-
negated preconditions only. Test Suite 2 are inputs with no revoke rules. Test Suite 3 are both positive and negated
preconditions, and assign/revoke rules. Red wavy lines are tools that crashed/timedout during testing for certain input
sizes.

that as in prior work [14], we did not try this Benchmark
Class on the TREDROLE and TREDRULE tools.

For the Mohawk inputs, Figure 10, Cree significantly
outperforms all the existing tools. Furthermore, besides Mo-
hawk+T, the existing tools are unable to withstand the input
instances from Mohawk [4] beyond a certain threshold. For
the polynomial-time verifiable sub-class, for example, which
is Test Suite 1, none of the existing tools were able to handle
inputs beyond 20,000 roles and 80,000 rules.

Cree is no worse than any of the prior tools for any
input we tried. Furthermore, for each of the prior tools, there
exists an input for which Cree is strictly better. Mohawk+T
is strictly worse than Cree for Benchmark (a), Benchmark(c),
and the Mohawk inputs. ASASPTIME-SA is strictly worse than
Cree for input Benchmark (b). For the tests 9-13, ASASP

TIME-SA performs 0.5 to 3 seconds slower than Cree. ASASP

TIME-NSA is strictly worse than Cree for the Mohawk inputs.

TREDROLE and TREDRULE perform much faster than Cree in
almost all instances it was able to handle, but Cree is able to
solve much larger policies without crashing or timing out.

7 CONCLUSIONS

We have proposed a new approach and corresponding
tool which we call Cree, for addressing safety analysis in
the context of Administrative Temporal Role-Based Access
Control (ATRBAC). ATRBAC introduces new features, and
therefore technical challenges for safety analysis: support
for time-intervals in policies, and rules for enabling and
disabling roles. In Cree, we reduce the problem to model
checking and then leverage an existing model checker,
NuSMV. In addition, we incorporate several heuristics for
performance: Polynomial Time Solving when possible, for-
ward and backward pruning, abstraction-refinement, and

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on September 03,2020 at 19:09:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. Y 16

bound-estimation. While these heuristics are inspired by
prior work, our algorithms are customized for the specific
technical challenges that ATRBAC introduces. We have
conducted a thorough empirical assessment in which we
compare Cree to five prior tools. Cree is no worse than any
of the other tools across all inputs we tried, and outperforms
every other tool for at least one of the input cases.

ACKNOWLEDGMENTS

We thank the creators of the prior tools [2], [14] for making
their tools available to us and helping us with their use. We
thank also Ranise et al. [14] for making all of their inputs
from their empirical assessment available to us.

REFERENCES

[1] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, “Protection
in operating systems,” Commun. ACM, vol. 19, no. 8, pp.
461–471, Aug. 1976. [Online]. Available: http://doi.acm.org/10.
1145/360303.360333

[2] E. Uzun, V. Atluri, S. Sural, J. Vaidya, G. Parlato, A. L. Ferrara,
and M. Parthasarathy, “Analyzing Temporal Role Based Access
Control Models,” in Proceedings of the 17th ACM Symposium on
Access Control Models and Technologies, ser. SACMAT ’12. New
York, NY, USA: ACM, 2012, pp. 177–186. [Online]. Available:
http://doi.acm.org/10.1145/2295136.2295169

[3] A. Jones, “Protection mechanism models: their usefulness,” Foun-
dations of secure Computation, pp. 237–252, 1978.

[4] K. Jayaraman, M. Tripunitara, V. Ganesh, M. Rinard, and
S. Chapin, “Mohawk: Abstraction-refinement and bound-
estimation for verifying access control policies,” ACM Trans. Inf.
Syst. Secur., vol. 15, no. 4, pp. 18:1–18:28, Apr. 2013. [Online].
Available: http://doi.acm.org/10.1145/2445566.2445570

[5] R. S. Sandhu, “The typed access matrix model,” in Proceedings
of the 1992 IEEE Symposium on Security and Privacy, ser. SP ’92.
Washington, DC, USA: IEEE Computer Society, 1992, pp. 122–.

[6] J. Shahen, J. Niu, and M. Tripunitara, “Mohawk+t: Efficient
analysis of administrative temporal role-based access control
(atrbac) policies,” in Proceedings of the 20th ACM Symposium on
Access Control Models and Technologies, ser. SACMAT ’15. New
York, NY, USA: ACM, 2015, pp. 15–26. [Online]. Available:
http://doi.acm.org/10.1145/2752952.2752966

[7] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed nist standard for role-based access control,”
ACM Trans. Inf. Syst. Secur., vol. 4, no. 3, pp. 224–274, Aug. 2001.

[8] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The arbac97 model
for role-based administration of roles,” ACM Trans. Inf. Syst.
Secur., vol. 2, no. 1, pp. 105–135, Feb. 1999. [Online]. Available:
http://doi.acm.org/10.1145/300830.300839

[9] A. Sasturkar, P. Yang, S. D. Stoller, and C. R. Ramakrishnan,
“Policy analysis for administrative role based access control,”
Theoretical Computer Science, vol. 412, no. 44, pp. 6208–6234, Oct.
2011.

[10] S. Jha, N. Li, M. Tripunitara, Q. Wang, and W. Winsborough,
“Towards formal verification of role-based access control policies,”
Dependable and Secure Computing, IEEE Transactions on, vol. 5, no. 4,
pp. 242–255, Oct 2008.

[11] M. I. Gofman, R. Luo, A. C. Solomon, Y. Zhang, P. Yang, and
S. D. Stoller, RBAC-PAT: A Policy Analysis Tool for Role Based
Access Control. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 46–49. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-00768-2_4

[12] E. Bertino, P. A. Bonatti, and E. Ferrari, “Trbac: A temporal role-
based access control model,” ACM Trans. Inf. Syst. Secur., vol. 4,
no. 3, pp. 191–233, Aug. 2001.

[13] Seconds Since the Epoch. [Online]. Avail-
able: http://pubs.opengroup.org/onlinepubs/9699919799/
basedefs/V1_chap04.html#tag_04_16

[14] S. Ranise, A. Truong, and A. Armando, “Scalable and Precise
Automated Analysis of Administrative Temporal Role-based
Access Control,” in Proceedings of the 19th ACM Symposium on
Access Control Models and Technologies, ser. SACMAT ’14. New
York, NY, USA: ACM, 2014, pp. 103–114. [Online]. Available:
http://doi.acm.org/10.1145/2613087.2613102

[15] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust manage-
ment,” in Proceedings 1996 IEEE Symposium on Security and Privacy,
May 1996, pp. 164–173.

[16] A. J. Lee, K. E. Seamons, M. Winslett, and T. Yu, Automated Trust
Negotiation in Open Systems. Boston, MA: Springer US, 2007, pp.
217–258.

[17] P. Rajkumar and R. Sandhu, “Safety decidability for pre-
authorization usage control with finite attribute domains,” IEEE
Transactions on Dependable and Secure Computing, vol. 13, no. 05,
pp. 582–590, sep 2016.

[18] P. V. Rajkumar and R. Sandhu, “Safety decidability for pre-
authorization usage control with identifier attribute domains,”
IEEE Transactions on Dependable and Secure Computing, 2018.

[19] A. L. Ferrara, P. Madhusudan, and G. Parlato, “Policy analysis
for self-administrated role-based access control,” in Proceedings
of the 19th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, ser. TACAS’13. Berlin,
Heidelberg: Springer-Verlag, 2013, pp. 432–447.

[20] S. D. Stoller, P. Yang, C. R. Ramakrishnan, and M. I. Gofman,
“Efficient policy analysis for administrative role based access
control,” in Proceedings of the 14th ACM Conference on Computer
and Communications Security, ser. CCS ’07. New York, NY, USA:
ACM, 2007, pp. 445–455.

[21] N. Li and M. V. Tripunitara, “Security analysis in role-based access
control,” ACM Trans. Inf. Syst. Secur., vol. 9, no. 4, pp. 391–420, Nov.
2006.

[22] P. Ammann, R. J. Lipton, and R. S. Sandhu, “The expressive power
of multi-parent creation in monotonic access control models,”
Journal of Computer Security, vol. 4, no. 2/3, pp. 149–166, 1996.
[Online]. Available: https://doi.org/10.3233/JCS-1996-42-303

[23] M. Tripunitara and N. Li, “A theory for comparing the expressive
power of access control models,” Journal of Computer Security,
vol. 15, no. 2, pp. 231–272, Feb. 2007. [Online]. Available:
http://doi.org/10.3233/JCS-2007-15202

[24] E. Uzun, V. Atluri, J. Vaidya, S. Sural, A. Ferrara, G. Parlato, and
P. Madhusudan, “Security analysis for temporal role based access
control,” Journal of Computer Security, vol. 22, pp. 961–996, 06 2014.

[25] S. Ranise, A. Truong, and L. Viganò, “Automated analysis of rbac
policies with temporal constraints and static role hierarchies,” in
Proceedings of the 30th Annual ACM Symposium on Applied Comput-
ing, ser. SAC ’15. New York, NY, USA: ACM, 2015, pp. 2177–2184.

[26] A. Truong and D. H. T. That, “Solving the user-role reachability
problem in arbac with role hierarchy,” in 2016 International Confer-
ence on Advanced Computing and Applications (ACOMP), Nov 2016,
pp. 3–10.

[27] S. Ranise, A. Truong, and L. Viganò, “Automated and efficient
analysis of administrative temporal rbac policies with role hierar-
chies,” Journal of Computer Security, no. Preprint, pp. 1–36, 2018.

[28] J. Shahen, “Cree: Source Code and Supplementary Material,”
https://ece.uwaterloo.ca/~jmshahen/cree/, Jan 2019.

[29] “NuSMV,” http://nusmv.fbk.eu/, Jun 2016.

Jonathan Shahen received his MASc and BASc in Computer
Engineering from the University of Waterloo, in Canada,
where he is currently working towards his PhD. He re-
searches information security and machine learning.

Jianwei Niu is a Professor and the interim Chair of Com-
puter Science at the University of Texas-San Antonio. She re-
searches formal methods to improve software dependability,
and has contributions to security and privacy policies, au-
thorization decision engines, and enforcement mechanisms.
Her research has been supported by numerous grants from
NSF, NHARP, Microsoft and the NSA.

Mahesh Tripunitara is a Professor in the Electrical and
Computer Engineering (ECE) Department at the University
of Waterloo, Canada. He researches various aspects of infor-
mation security. His work, with students, has won paper-
awards at the ACM Symposium on Access Control Models
and Technologies 2013 and 2015, and the Usenix Security
Symposium 2013.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on September 03,2020 at 19:09:37 UTC from IEEE Xplore. Restrictions apply.

http://doi.acm.org/10.1145/360303.360333
http://doi.acm.org/10.1145/360303.360333
http://doi.acm.org/10.1145/2295136.2295169
http://doi.acm.org/10.1145/2445566.2445570
http://doi.acm.org/10.1145/2752952.2752966
http://doi.acm.org/10.1145/300830.300839
http://dx.doi.org/10.1007/978-3-642-00768-2_4
http://dx.doi.org/10.1007/978-3-642-00768-2_4
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
http://doi.acm.org/10.1145/2613087.2613102
https://doi.org/10.3233/JCS-1996-42-303
http://doi.org/10.3233/JCS-2007-15202
https://ece.uwaterloo.ca/~jmshahen/cree/
http://nusmv.fbk.eu/

	1 Introduction
	2 ATRBAC-Safety
	2.1 RBAC, ARBAC and ARBAC-Safety
	2.2 TRBAC, ATRBAC and ATRBAC-Safety

	3 Prior work
	4 Our work
	5 Cree
	5.1 Polynomial Time Solving when possible for ATRBAC-Safety
	5.2 Static Pruning
	5.3 Abstraction Refinement
	5.4 Bound Estimation
	5.5 Reduction to Model Checking
	5.6 Performance Considerations

	6 Empirical Assessment
	7 Conclusions
	References

