
A Case Study on Using Deep Learning for Network
Intrusion Detection

Gabriel C. Fernández
Department of Computer Science

University of Texas at San Antonio

Shouhuai Xu
Department of Computer Science

University of Texas at San Antonio

Abstract—Deep Learning has been very successful in many
application domains. However, its usefulness in the context of
network intrusion detection has not been systematically investi-
gated. In this paper, we report a case study on using deep learning
for both supervised network intrusion detection and unsupervised
network anomaly detection. We show that Deep Neural Networks
(DNNs) can outperform other machine learning based intrusion
detection systems, while being robust in the presence of dynamic
IP addresses. We also show that Autoencoders can be effective
for network anomaly detection.

Index Terms—Network Intrusion Detection, Deep Learning,
Deep Neural Network, Autoencoder, Anomaly Detection

I. INTRODUCTION

As the scale of cyber attacks and volume of network data
increases exponentially, organizations must continually adapt
against the dynamic nature of evolving cyber threat actors.
With more security tools and sensors being deployed in mod-
ern enterprise networks, the number of security events being
generated continues to increase, making it more challenging to
detect malicious activities. Organizations must adopt new tech-
niques to augment human analysts in monitoring, preventing,
detecting, and responding to cybersecurity events and potential
attacks. Machine Learning has been deemed by many as a
game changer in cyber defense. However, the usefulness of
Deep Learning in the context of Network Intrusion Detection
Systems (NIDSs) has not been systematically understood,
despite its tremendous success in other application domains
(e.g., image recognition).

A. Our contributions

The contribution of this work is two-fold. First, we propose
using a feedforward fully connected Deep Neural Network
(DNN) to train a NIDS via supervised learning. We also
propose using an autoencoder to detect and classify attack
traffic via unsupervised learning in the absence of labeled
malicious traffic. Second, we evaluate these models using
two recent network intrusion detection datasets with known
ground truth of malicious vs. benign traffic. We show (i) DNN
outperforms other machine learning based network intrusion
detection systems; (ii) DNN is robust in the presence of
dynamic IP addresses assigned by the Dynamic Host Config-
uration Protocol (DHCP), which is important when we need
to use IP addresses as features in training DNNs; and (iii)
autoencoder is effective for anomaly detection.

B. Related work

Intrusion detection can be host-based or network-based,
with this paper being in the latter category. There are multiple
approaches to network-based intrusion detection. The idea of
anomaly detection can be traced back as early as the 19th
century with origins in the statistics community [1]. The study
of intrusion detection for cybersecurity is introduced in 1987
[2]. Fiore et al. [3] explored the use of a semi-supervised
model for network intrusion detection, using a Discriminative
Restricted Boltzmann Machine. However, their study is based
on the KDD 99 dataset [4], which is outdated now [5].

In addition to the KDD 99 dataset, there are other datasets,
such as: the CAIDA dataset [6], the DARPA/Lincoln Lab
packet trace [7], [8], and the Lawrence Berkeley National
Laboratory (LBNL) and ICSI Enterprise Tracing Project [9].
However, comparative studies of these datasets [10], [11]
found that some are outdated and unreliable because they
lack a diversity of traffic and volumes, some lack a variety
of attacks, some are anonymized and lack valuable payload
information, and some lack feature set and metadata.

The present paper focuses on using newer datasets that
have recently become available to the research community.
Not only do these newer datasets contain modern-day attacks,
they are created in such a way as to follow established
guidelines of reliable intrusion detection datasets (in terms of
realism, evaluation capabilities, total capture, completeness,
and malicious activity) [11]. There are a number of other
studies that use these datasets for evaluation in their work.
However, many evaluating the ISCX IDS 2012 dataset [11]
use only a subset of the data, and vary in their ways for
generating the ground truth [12]–[16]. Studies conducted with
the CIC IDS 2017 dataset [11] have used other types of
machine learning techniques than Deep Learning [17]–[23].
More recent studies have begun to use Deep Learning with
the CIC IDS 2017 dataset; however, some only use a subset
of the data for detecting one type of attack (e.g., port scan,
DDoS) [24]–[26] or generate their own flows instead of using
the ground truth flows [27]. The present study differs in that
it evaluates both supervised and unsupervised deep learning
approaches across the full spectrum of attacks, while using the
entirety of the datasets as well as the ground truth provided.

Intrusion detection is an important field of cybersecurity
data analytics [28]–[36], which is one pillar underlying the

ar
X

iv
:1

91
0.

02
20

3v
1

 [
cs

.C
R

]
 5

 O
ct

 2
01

9

Cybersecurity Dynamics framework [37], [38] that aims to
model and quantify cybersecurity from a holistic perspective.
The other two pillars are known as first-principle modeling
and analysis [39]–[45] and cybersecurity metrics [46]–[49].

The rest of the paper is organized as follows. Section II
reviews DNNs and Autoencoders. Section III presents the case
study. Section IV discusses the limitations of the present study.
Section V concludes the paper.

II. PRELIMINARIES

DNNs are a powerful mechanism for supervised learning.
They can represent functions of increasing complexity, by
inclusion of more layers and more units per layer in a neural
network [50]. In the context of NIDSs, DNNs can be used to
discover patterns of benign and malicious traffic hidden within
large amounts of structured data. Figure 1 is an example of a
standard Deep Learning representation, where nodes represent
inputs, edges represent weights, superscript (i) denotes the
ith training example, and superscript [l] denotes the lth layer.
Our case study focuses on DNNs because they can cope with
tabular data and categorical variables of high cardinality, which
are exhibited by the datasets we analyze.

Fig. 1: Deep neural network representation

Autoencoder is another type of neural network and is trained
in such a way that it aims to copy its input to its output, namely
aiming to find a lower dimensional, latent space representation
of the input data [50]. Unlike other popular dimensionality
reduction techniques such as Principle Component Analysis
(PCA), it achieves its goal in a non-linear fashion. Figure 2
shows an example standard Autoencoder, where the number
of input neurons is equal to the number of output neurons. We
choose Autoencoder for our case study on anomaly detection
because of its usefulness given lots of normal data, and its
applicability to situations where it may be difficult to explain
what represents anomalous data.

III. CASE STUDY

A. Methodology

Deep Learning excels when there is a large amount of
training data [50]. This suggests that we use the newer datasets
for our case study: the ISCX IDS 2012 dataset [11] has over

Fig. 2: Example Autoencoder neural network architecture

2.54M examples (including 2.47M benign ones and 68,910
malicious ones); the CIC IDS 2017 dataset [10] has over
2.83M examples (including 2.27M benign ones and 557,646
malicious ones). In contrast, older datasets are often small
(e.g., the KDD 99 dataset [4] has only 148,517 flows, including
77,054 benign ones and 71,463 malicious ones).

We choose DNNs because they can cope with tabular data
that contains categorical variables of high cardinality, which
are exhibited by the two newer datasets we use. A key issue is
to cope with categorical features of high cardinality [51]. The
idea is to use entity embedding to map categorical features of
high cardinality to low-dimensional real vectors in such a way
that similar values remain close to each other [52], [53].

We choose Autoencoders because they are useful when there
are lots of examples of normal data, while it may be difficult
to explain what represents anomalous data [11]. Autoencoders
learn a compressed representation of the input data, meaning
that its output is a reconstruction of the input data in a certain
form. By minimizing the error of reconstructing the normal
input (i.e., benign flows), Autoencoders learn to modify the
weights for reconstructing the input. When an Autoencoder
encounters a malicious flow, the reconstruction error would
be high (in comparison to reconstructing a normal flow).

B. Data description

The ISCX IDS 2012 dataset [11] was created by modeling
a given network environment with a testbed and then using
agents to perform attacks on the testbed network. When
compared with the outdated datasets [4], [7], [8], this dataset
can be characterized as follows [11]: realistic network con-
figuration because of the real testbed; realistic traffic because
of the real attacks/exploits; labeled ground truth of benign
and malicious traffic; total capture of communications; and
diverse attack scenarios. This dataset is provided in PCAP as
well as a custom XML file of network flows created with the
IBM QRadar appliance; the XML flow file contains ground
truth labels. Recall that a network flow is assembled from a
number of IP packets and consists of source and destination IP
addresses, source and destination port numbers, and protocol.
Moreover, flows are often used as a unit for detecting attacks,
which is our focus in the present study (another unit is IP
packet). Table I provides an overview of this dataset.

TABLE I: Overview of the ISCX IDS 2012 dataset, where “#
of attacks” is the subset of flows that contain an attack.

Date # of Flows # of Attacks Description
6/11/2012 474,278 0 Benign network activities
6/12/2012 133,193 2,086 Brute-force against SSH
6/13/2012 275,528 20,358 Infiltrations internally
6/14/2012 171,380 3,776 HTTP DoS attacks
6/15/2012 571,698 37,460 DDoS using IRC bots
6/16/2012 522,263 11 Brute-force against SSH
6/17/2012 397,595 5,219 Brute-force against SSH

Total 2,545,935 68,910 2.71% malicious

Table II summarizes the 14 features that can be extracted
from the labeled XML file of network flows.

TABLE II: Description of the 14 features of the ISCX IDS
2012 dataset, where “uniques” means the number of possible
values of a categorical feature.

No. Feature Description Type Uniques
1 SrcIP Source IP address Categorical 2,478
2 DstIP Dest. IP address Categorical 34,552
3 SrcPort Source port Categorical 64,482
4 DstPort Dest. port Categorical 24,238
5 AppName Application name Categorical 107
6 Direction Direction of flow Categorical 4
7 Protocol IP protocol Categorical 6
8 Duration Flow duration Continuous N/A
9 TotalSrcBytes Total source bytes Continuous N/A
10 TotalDstBytes Total dest. bytes Continuous N/A
11 TotalBytes Total bytes Continuous N/A
12 TotalSrcPkts Total source packets Continuous N/A
13 TotalDstPkts Total dest. packets Continuous N/A
14 TotalPkts Total packets Continuous N/A

The CIC IDS 2017 dataset [10] improves the ISCX IDS
2012 dataset by containing, along with benign traffic, attack
traffic from seven different kinds of attacks (i.e., brute-force
against the SSH and Web, Heartbleed, botnet, denial of ser-
vice (DoS), distributed denial of service (DDoS), cross-site
scripting (XSS) and SQL injection attacks against websites,
and infiltration). This dataset includes not only the raw PCAP
data, but also pre-processed network flow data from the PCAP
data (processed using the CICFlowMeter tool [54]). This pre-
processed network flow data is provided as CSV files that can
be fed into the machine learning pipeline. The pre-processed
network flow data has 83 columns (e.g., duration, number of
packets, number of bytes, length of packets) that can be used as
features, plus one label column and one flow ID column. Since
seven different kinds of attacks are contained in this dataset,
we can conduct multiclass classification research. Table III
shows a summary of this dataset.

Table IV highlights some of the 74 features that were
“useable” from the CIC IDS 2017 dataset, while noting that
among the other 85-74=11 features, eight continuous features
contain no variability or missing values and therefore are
discarded, and the remaining three are FlowID, the timestamp,
and the label (used for the predicted class).

TABLE III: Overview of the CIC IDS 2017 dataset, where the
columns have the same meanings as in Table I.

Date # of Flows # of Attacks Description
Monday 529,918 0 Normal activities

Tuesday 445,909 7,938 FTP-Patator
5,897 SSH-Patator

Wednesday 692,703

5,796 DoS slowloris
5,499 DoS Slowhttptest

231,073 DoS Hulk
10,293 Dos GoldenEye

11 Heartbleed

Thursday AM 170,366
1507 Web - Brute Force
652 Web - XSS
21 Web - SQL Injection

Thursday PM 288,602 36 Infiltration
Friday AM 191,033 1966 Bot

Friday PM 1 286,467 158,930 PortScan
Friday PM 2 225,745 128,027 DDoS

Total 2,830,743 557,646 19.70% malicious

TABLE IV: Description of some of the 74 features of the CIC
IDS 2017 dataset, where the columns have the same meanings
as in Table II.

No. Feature Description Type Uniques
1 SrcIP Source IP address Categorical 17,002
2 DstIP Dest. IP address Categorical 19,112
3 SrcPort Source port Categorical 64,638
4 DstPort Dest. port Categorical 53,791
5 Protocol IP protocol Categorical 3
6 Duration Flow duration Continuous N/A

7 total fpackets Total num.
forward packets Continuous N/A

8 total bpackets Total num.
backward packets Continuous N/A

9 total fpktl Total size of
forward packets Continuous N/A

10 total bpackets Total size of
backward packets Continuous N/A

...
...

...
...

...

70 std active Std. dev time flow
active before idle Continuous N/A

71 min idle Min time flow
idle before active Continuous N/A

72 mean idle Mean time flow
idle before active Continuous N/A

73 max idle Max time flow
idle before active Continuous N/A

74 std idle Std. dev time flow
idle before active Continuous N/A

C. Using DNNs for network intrusion detection

1) Pre-processing: We propose formatting a dataset (more
specifically, network flows) in such a way that can be input
into a DNN. Recall that the ISCX IDS 2012 dataset is provided
in PCAP as well as a custom XML file of network flows with
associated ground-truth labels (indicating malicious or benign
flows). The XML file is parsed and converted to a CSV file
of flows, which becomes the input into the machine learning
pipeline. Recall that the CIC IDS 2017 dataset is in the form
of both PCAP as well as flows characterized by 74 usable
features (5 categorical and 69 statistical).

In order to make machine learning algorithms train models
in the same feature space, it is a common practice to normalize

or scale the continuous values among all the features. For
this purpose, we use the standard min-max scaling, which is
a normalization method for scaling data to [0,1] as follows:
Xnorm = X−Xmin

Xmax−Xmin
, where Xmin and Xmax are respec-

tively the minimum and maximum value of feature X .
In order to train DNNs over categorical data, we need to

convert them to numerical values. For this purpose, we propose
adopting the entity embedding technique [51] because it can
cope with categorical features that take a large number of
possible values. This is true for the datasets we analyze be-
cause there are many possible values for source IP addresses,
destination IP addresses, source port numbers, and destination
port numbers. In the entity embedding method, the number
of embedding dimensions are determined according to the
following rule of thumb [52]:

dimensions =
⌈

4
√
possible values

⌉
, (1)

where possible values is the number of possible values a
categorical feature can take. Specifically, a categorical feature
is first mapped to an integer between 0 and n − 1, where
n is the number of unique values that can be taken by the
feature, and then encoded as a dense vector according to the
dimensions as calculated in Eq. (1). Table V summarizes the
embedding result of the four categorical features in the CIC
IDS 2017 dataset.

TABLE V: Embedding of the four categorical features in the
CIC IDS 2017 dataset.

Feature Possible Values Embedded Dimensions
Source IP 17,002 12

Destination IP 19,112 12
Source Port 64,638 16

Destination Port 53,791 15

The parameters (weights) for the vector representation of
the categorical features are initialized using a random uniform
distribution over the support [−0.05, 0.05]. This representation
is not only more computationally efficient, but the entity
embedding layer learns intrinsic properties of each categorical
feature, and the deeper layers of the neural network form
complex combinations between them [51]. Since these vectors
are inputs into the first layer of a neural network, their weights
are updated in the back-propagation step at each epoch.

2) Training: The neural network consists of three layers of
64 units per layer. Feeding into these three hidden layers is
an initial input layer consisting of the embedded categorical
variables concatenated with the statistical input features. The
activation function on each hidden layer is the ReLU activation
function, R(z) = max(0, z), while the last output layer uses
a sigmoid activation function, σ(z) = 1

1+e−z . A dropout rate
of 0.40 is used on each of the hidden layers. The optimizer
used is RMSProp, with a default learning rate of 0.001. The
loss function used is binary crossentropy:

Hp(q) = −
1

N

N∑
i=1

yi ·log(p(yi))+(1−yi)·log(1−p(yi)), (2)

where yi is the label (1 for malicious and 0 for benign), p(yi)
is the predicted probability of a given flow, and N is the total
number of flows. Intuitively, Eq. 2 says that for each malicious
flow (yi = 1), the loss is log(p(yi)), which is the logarithm of
the probability that the flow is malicious; for each benign flow
(yi = 0), the loss is log(1− p(yi)), which is the logarithm of
the probability that the flow is benign.

3) Experiments and results: We aim to use experiments to
answer two questions: (i) Is deep learning more effective than
other machine learning methods? (ii) Is deep learning robust
in the presence of dynamic IP addresses? Note that (ii) is
important because a trained DNN, which uses IP addresses as
an important feature, can easily become useless in the presence
of dynamic IP addresses, which are produced by networks
using the Dynamic Host Configuration Protocol (DHCP).

In order to answer the aforementioned question (i), we
compare the effectiveness of deep learning and other machine
learning methods using two standard metrics [46], namely the
True-Positive Rate (TPR) and the False-Positive Rate (FPR).

TABLE VI: Comparison of deep learning based intrusion
detection and other machine learning methods based intrusion
detection [17] using the CIC IDS 2017 dataset.

Technique TPR FPR
Hypbrid IDS

Decision Tree + Rule-based [17] 0.94475 .01145

WISARD [18] 0.48175 0.02865
Forest PA [19] .92920 0.03550

J48 Consolidated [20] 0.92020 0.06645
LIBSVM [21] 0.54595 0.05130
FURIA [22] 0.90500 0.03165

Random Forest [17] 0.93050 0.01880
REP Tree [17] 0.91640 0.04835

MLP [17] 0.77830 0.07350
Naive Bayes [17] 0.82510 0.33455

Jrip [17] 0.93400 0.04470
J48 [17] 0.91990 0.05040

DNN with IPs 0.9993 0.0003
DNN without IPs 0.9677 0.0052

Table VI compares deep learning against the other ap-
proaches evaluated in [17] using the CIC IDS 2017 dataset.
We observe that DNN while using IP addresses leads to the
highest True-Positive Rate (Detection Rate) and lowest False-
Positive Rate. This leads to the following:

Insight 1: DNN while using IP addresses achieves the
highest effectiveness when compared with the other machine
learning method studied in the literature.

In order to answer the aforementioned question (ii), we
train the deep learning model using some portion of the IP
addresses. This is reasonable because DHCP typically operates
in the same network, meaning that the network identity is static
(e.g., the first 24-bit of IP addresses of a class C network).

Figure 3 shows the results for the two datasets with and
without IP address features. Figure 3e shows the results of
using just the first three octets for source and destination IP
address. In Figure 3b we observe that for the ISCX IDS 2012
dataset, when removing the IP address feature the performance
drops considerably in terms of TPR and FNR. For the CIC IDS

(a) ISCX2012 w/ IP (b) ISCX2012 w/o IP (c) CIC2017 w/ IP (d) CIC2017 w/o IP (e) CIC2017 - first 3 octets

Fig. 3: Confusion matrix results for both datasets, where the x-axis is the predicted class and the y-axis is the true class.

2017 dataset, Figure 3d shows that removing the IP address
only slightly degrades the performance in comparison to ISCX
IDS 2012. Note that there is considerably larger amount of
malicious examples in CIC IDS 2017 (19.68%) compared to
ISCX IDS 2012 (3.32%). We also notice that embedding the
IP address with only the first three octets (Figure 3e) achieves
similar results as when using the full IP address as shown
(Figure 3c). This leads to the following:

Insight 2: DNN while using the first three octets of the IP
address is as effective as using the full IP address, meaning
that deep learning based intrusion detection is robust in
the presence of DHCP. However, using full IP addresses is
important when the dataset is imbalanced (i.e., the proportion
of labeled malicious traffic is small).

D. Using Autoencoders for network intrusion detection

1) Pre-processing: For the Autoencoder experiments, all
69 usable continuous features of flow statistics in the CIC
IDS 2017 dataset are used, and are normalized using the min-
max technique mentioned above. One categorical feature of
“protocol” is also used, which only has 3 unique values, and
is converted to floating point numbers using one-hot encoding.
The high-cardinality features of IP address and port are not
used; we leave it to future work to incorporate these into the
training of autoencoders.

2) Training: The autoencoder configuration consists of 7
layers, with the first and last layer using the sigmoid activation
function, and all other hidden layers using ReLU. The first and
last layer consist of 72 units (representing all input features),
and the hidden layers consist of 140, 35, 16, 16, 35 units
respectively. In addition, L1 regularization is applied to the
first input layer. The objective function for the autoencoder is
the squared error. Written out in terms of weights and inputs,
this function is shown in Eq. (3) below.

J = |X−X̂|2F = |X−sigmoid(sigmoid(X ·W)WT)|2F (3)

3) Experiment and results: Figure 4 plots the experimental
results. We observe that there is a higher reconstruction error
for the malicious traffic flows as compared to the benign
flows. Depending on the threshold set, the number of false
positives can be adjusted. With the current threshold set at
a 0.03 reconstruction error, there only results in a total of 89
false positives and a False-Positive Rate of 0.00013. However,
there is a high False-Negative Rate of 0.7670. In addition, we

observe that a majority of the malicious flows are clustered in
groups, lending credence to future work that can incorporate
the time domain as a feature. We draw the following insight:

Fig. 4: Experimental results using the CIC IDS 2017 dataset:
Autoencoder reconstruction error with threshold.

Insight 3: Autoencoders can be effective as anomaly detec-
tion mechanisms for network intrusion detection (in terms of
low False-Positive Rate) when training on benign traffic only.

IV. LIMITATIONS

The present study has some limitations. From a methodol-
ogy point of view, we only considered two kinds of neural
networks. Future research needs to consider additional types
of neural networks. For DNNs, we need to conduct further
experiments using only the first two octets (first 16 bits), or
even the first one octet, to see if they can achieve the same
results as using the full 32-bit IP address. For Autoencoders,
we need to investigate whether or not using the IP address
and port features can reduce their False-Negative Rate. From
a datasets point of view, the ISCX IDS 2012 dataset contains
only binary ground-truth labels (i.e., malicious vs. benign) and
contains no HTTP traffic.

V. CONCLUSION

We have shown that DNN can achieve excellent results in
supervised network intrusion detection. We also showed that
using only the first three octets of IP addresses can be effective
in coping with the use of dynamic IP addresses, indicating
robustness of DNN in the presence of DHCP. We further
showed that autoencoders can be used for anomaly detection
when they are trained on benign flows.
Acknowledgements. This work was supported in part by ARL
grant #W911NF-17-2-0127 and NSF CREST Grant #1736209.

REFERENCES

[1] F. Edgeworth, “Xli. on discordant observations,” The London, Edin-
burgh, and Dublin Philosophical Magazine and Journal of Science,
vol. 23, no. 143, pp. 364–375, 1887.

[2] D. E. Denning, “An Intrusion-Detection Model,” IEEE Transactions on
Software Engineering, vol. SE-13, no. 2, pp. 222–232, 1987.

[3] U. Fiore, F. Palmieri, A. Castiglione, and A. De Santis, “Network
anomaly detection with the restricted boltzmann machine,” Neurocom-
puting, vol. 122, pp. 13–23, 2013.

[4] “KDD Cup Dataset,” 1999. http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html.

[5] R. Sommer and V. Paxson, “Outside the Closed World: On Using
Machine Learning for Network Intrusion Detection,” in 2010 IEEE
Symposium on Security and Privacy, pp. 305–316, IEEE, 2010.

[6] Y. Hyun, B. Huffaker, D. Andersen, E. Aben, C. Shannon, M. Luckie,
and K. Claffy, “The caida ipv4 routed/24 topology dataset,” URL
http://www.caida.org/data/active/ipv4 routed 24 topology dataset.xml,
2011.

[7] R. Lippmann, R. K. Cunningham, D. J. Fried, I. Graf, K. R. Kendall,
S. E. Webster, and M. A. Zissman, “Results of the 1998 darpa offline
intrusion detection evaluation,” in Proc. RAID, 1999.

[8] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “The
1999 darpa off-line intrusion detection evaluation,” Computer networks,
vol. 34, no. 4, pp. 579–595, 2000.

[9] M. Allman, M. Bennett, M. Casado, S. Crosby, J. Lee, B. Nechaev,
R. Pang, V. Paxson, and B. Tierney, “Lbnl/icsi enterprise tracing project,”
2005.

[10] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, “Toward
Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization,” in 4th International Conference on Information Sys-
tems Security and Privacy, pp. 108–116, 2018.

[11] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” Comput. Secur., vol. 31, pp. 357–374, May 2012.

[12] W. Yassin, N. I. Udzir, Z. Muda, M. N. Sulaiman, et al., “Anomaly-
based intrusion detection through k-means clustering and naives bayes
classification,” in Proc. ICOCI, vol. 49, pp. 298–303, 2013.

[13] A. Ammar, “A decision tree classifier for intrusion detection priority
tagging,” Computer and Communications, vol. 3, no. 04, p. 52, 2015.

[14] G. Folino, F. S. Pisani, and P. Sabatino, “A distributed intrusion detection
framework based on evolved specialized ensembles of classifiers,” in
Proc. ECAEC, pp. 315–331, 2016.

[15] Z. Tan, A. Jamdagni, X. He, P. Nanda, R. P. Liu, and J. Hu, “Detection
of denial-of-service attacks based on computer vision techniques,” IEEE
transactions on computers, vol. 64, no. 9, pp. 2519–2533, 2015.

[16] B. Atli, “Anomaly-based intrusion detection by modeling probability
distributions of flow characteristics,” 2017.

[17] A. Ahmim, L. Maglaras, M. A. Ferrag, M. Derdour, and H. Janicke, “A
novel hierarchical intrusion detection system based on decision tree and
rules-based models,” arXiv preprint arXiv:1812.09059, 2018.

[18] M. De Gregorio and M. Giordano, “An experimental evaluation of
weightless neural networks for multi-class classification,” Applied Soft
Computing, vol. 72, pp. 338–354, 2018.

[19] M. N. Adnan and M. Z. Islam, “Forest pa: Constructing a decision
forest by penalizing attributes used in previous trees,” Expert Systems
with Applications, vol. 89, pp. 389–403, 2017.

[20] I. Ibarguren, J. M. Pérez, J. Muguerza, I. Gurrutxaga, and O. Arbelaitz,
“Coverage-based resampling: Building robust consolidated decision
trees,” Knowledge-Based Systems, vol. 79, pp. 51–67, 2015.

[21] C.-C. Chang and C.-J. Lin, “Libsvm: Alibraryforsupportve ctorma-
chines,” Availableat: http://www. csie. ntu. edu. tw/scjlin/libsvm, 2001.

[22] J. Hühn and E. Hüllermeier, “Furia: an algorithm for unordered fuzzy
rule induction,” Data Mining and Knowledge Discovery, vol. 19, no. 3,
pp. 293–319, 2009.

[23] D. Aksu, S. Üstebay, M. A. Aydin, and T. Atmaca, “Intrusion detection
with comparative analysis of supervised learning techniques and fisher
score feature selection algorithm,” in Proc. ISCIS, pp. 141–149, 2018.

[24] D. Aksu and M. A. Aydin, “Detecting port scan attempts with compar-
ative analysis of deep learning and support vector machine algorithms,”
in IBIGDELFT’2018, pp. 77–80, 2018.

[25] J. Jiang, Q. Yu, M. Yu, G. Li, J. Chen, K. Liu, C. Liu, and W. Huang,
“Aldd: A hybrid traffic-user behavior detection method for application
layer ddos,” in TrustCom/BigDataSE, pp. 1565–1569, 2018.

[26] S. Ustebay, Z. Turgut, and M. A. Aydin, “Intrusion detection system with
recursive feature elimination by using random forest and deep learning
classifier,” in IBIGDELFT, pp. 71–76, 2018.

[27] A. Pektaş and T. Acarman, “A deep learning method to detect network
intrusion through flow-based features,” International Journal of Network
Management, p. e2050.

[28] M. Xu, K. M. Schweitzer, R. M. Bateman, and S. Xu, “Modeling
and predicting cyber hacking breaches,” IEEE T-IFS, vol. 13, no. 11,
pp. 2856–2871, 2018.

[29] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability detec-
tion,” in Proc. NDSS’2018.

[30] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “Vulpecker: an automated
vulnerability detection system based on code similarity analysis,” in
Proc. ACSAC’2016, pp. 201–213.

[31] L. Xu, Z. Zhan, S. Xu, and K. Ye, “An evasion and counter-evasion
study in malicious websites detection,” in Proc. IEEE CNS’14, 2014.

[32] L. Xu, Z. Zhan, S. Xu, and K. Ye, “Cross-layer detection of malicious
websites,” in ACM CODASPY’13, pp. 141–152, 2013.

[33] Z. Zhan, M. Xu, and S. Xu, “Characterizing honeypot-captured cyber
attacks: Statistical framework and case study,” IEEE T-IFS, vol. 8, no. 11,
pp. 1775–1789, 2013.

[34] Z. Zhan, M. Xu, and S. Xu, “Predicting cyber attack rates with extreme
values,” IEEE Transactions on Information Forensics and Security,
vol. 10, no. 8, pp. 1666–1677, 2015.

[35] Y.-Z. Chen, Z.-G. Huang, S. Xu, and Y.-C. Lai, “Spatiotemporal patterns
and predictability of cyberattacks,” PLoS One, vol. 10, 05 2015.

[36] E. Ficke, K. M. Schweitzer, R. M. Bateman, and S. Xu, “Characterizing
the effectiveness of network-based intrusion detection systems,” in IEEE
MILCOM 2018, pp. 76–81, 2018.

[37] S. Xu, “Cybersecurity dynamics,” in Proc. Symposium on the Science
of Security (HotSoS’14), pp. 14:1–14:2, 2014.

[38] S. Xu, “Cybersecurity dynamics: A foundation for the science of
cybersecurity,” in Proactive and Dynamic Network Defense (Z. Lu and
C. Wang, eds.), Springer New York, 2018 (to appear).

[39] S. Xu, W. Lu, and L. Xu, “Push- and pull-based epidemic spreading in
arbitrary networks: Thresholds and deeper insights,” ACM TAAS, vol. 7,
no. 3, pp. 32:1–32:26, 2012.

[40] X. Li, P. Parker, and S. Xu, “A stochastic model for quantitative security
analysis of networked systems,” IEEE TDSC, vol. 8, no. 1, pp. 28–43.

[41] W. Lu, S. Xu, and X. Yi, “Optimizing active cyber defense dynamics,”
in Proc. GameSec’13, pp. 206–225, 2013.

[42] S. Xu, W. Lu, L. Xu, and Z. Zhan, “Adaptive epidemic dynamics in
networks: Thresholds and control,” ACM TAAS, vol. 8, no. 4, 2014.

[43] Y. Han, W. Lu, and S. Xu, “Characterizing the power of moving target
defense via cyber epidemic dynamics,” in Proc. HotSoS’14, 2014.

[44] R. Zheng, W. Lu, and S. Xu, “Preventive and reactive cyber defense
dynamics is globally stable,” IEEE TNSE, vol. 5, no. 2, 2018.

[45] Z. Lin, W. Lu, and S. Xu, “Unified preventive and reactive cyber
defense dynamics is still globally convergent,” IEEE/ACM Transactions
on Networking, 2019 (accepted for publication).

[46] M. Pendleton, R. Garcia-Lebron, J.-H. Cho, and S. Xu, “A survey on
systems security metrics,” ACM Comput. Surv.

[47] J. Cho, S. Xu, P. Hurley, M. Mackay, T. Benjamin, and M. Beaumont,
“Stram: Measuring the trustworthiness of computer-based systems.”
ACM Computing Survey, 2019.

[48] P. Du, Z. Sun, H. Chen, J. Cho, and S. Xu, “Statistical estimation of
malware detection metrics in the absence of ground truth,” IEEE T-IFS,
vol. 13, no. 12, pp. 2965–2980, 2018.

[49] J. D. Mireles, E. Ficke, J.-H. Cho, P. Hurley, and S. Xu, “Metrics towards
measuring cyber agility.” IEEE T-IFS, 2019.

[50] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[51] C. Guo and F. Berkhahn, “Entity embeddings of categorical variables,”
arXiv preprint arXiv:1604.06737, 2016.

[52] Google, “Machine learning crash course: Embeddings.”
https://developers.google.com/machine-learning/crash-course/
embeddings/video-lecture, 2019.

[53] R. Thomas, “An introduction to deep learning for tabular data.” https:
//www.fast.ai/2018/04/29/categorical-embeddings/, 2018.

[54] A. H. Lashkari, G. D. Gil, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of tor traffic using time based features,” in Proc.
ICISSP, pp. 253–262, 2017.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://www.deeplearningbook.org
https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture
https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture
https://www.fast.ai/2018/04/29/categorical-embeddings/
https://www.fast.ai/2018/04/29/categorical-embeddings/

	I Introduction
	I-A Our contributions
	I-B Related work

	II Preliminaries
	III Case Study
	III-A Methodology
	III-B Data description
	III-C Using DNNs for network intrusion detection
	III-C1 Pre-processing
	III-C2 Training
	III-C3 Experiments and results

	III-D Using Autoencoders for network intrusion detection
	III-D1 Pre-processing
	III-D2 Training
	III-D3 Experiment and results

	IV Limitations
	V Conclusion
	References

