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Abstract—Significant volume of information of a broad variety
(or modalities, such as image, audio, video, and text) is sensed and
collected [such as those by the Internet of Things (IoT) devices]
regularly (e.g., hourly). Such information is then analyzed to
inform decision making, such as clinical diagnosis and product
recommendation. Data with different representations may have
the same semantic information, and there have been consider-
able efforts devoted to designing efficient searching approaches on
objects with different modalities. However, multimodal data carry
sensitive information, and maintaining privacy is crucial in our
privacy-aware and interconnected society. In this article, we
combine both the collective matrix factorization (CMF) and
homomorphic encryption (HE) to construct an efficient and accu-
rate scheme to facilitate cross-modal retrieval, without the loss
of any sensitive information. Our scheme identifies the uni-
fied feature vectors for every object in the training set with
different modalities and obtains the mapping matrices for out-
of-sample objects. After the encryption process, these matrices
are stored on the remote cloud server (CS). Hence, the server
can calculate the secure, unified features for any query. In this
article, we also built a privacy-preserving index structure using
locality-sensitive hashing (LSH), which provides both security
and efficiency. Performance evaluations demonstrate the potential
for our proposed scheme in the real-world IoT applications.

Index Terms—Collective matrix factorization (CMF), homo-
morphic encryption (HE), locality-sensitive hashing (LSH), secure
cross-modal retrieval (SCMR).
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I. INTRODUCTION

INTERNET of Things (IoT) devices sense, collect, and
transfer significant volume of data, and such data may exist

in heterogeneous types (or modalities, such as image, audio,
video, and text). Collectively, data from different sources
can contain information of commercial and societal interests.
Hence, there have been efforts to design cross-modal searches
to facilitate the retrieval of heterogeneous data containing the
same latent semantic meaning. For example, wearable smart
healthy devices can monitor user physiological data, which
can be used to inform medical diagnosis, and data collected
by vision assistive devices can improve the quality of life for
the visually impaired individual [1]–[4].

While a broad range and types of data collected by sensing
devices can enrich the representation of things, the storage and
computational capabilities of sensors are limited. The combi-
nation of IoT and cloud services can be utilized to process IoT
data. However, data privacy is a potential concern. Therefore,
in this article, we seek to determine how one can bridge two
different modalities to facilitate searching for the same seman-
tic information without affecting the privacy of the original
data. Also, in this article, we focus on multimedia data.

A number of cross-modal retrieval methods have been
developed in the literature, such as those designed for visual
classification, searching of media, recognizing actions, and
visual representations [5]–[8]. These methods are generally
capable of filling the semantic gap among heterogeneous
sources of data, but they are not designed to preserve user pri-
vacy. Thus, when sensitive, unencrypted data are uploaded to
a search engine, privacy cannot be maintained, and an adver-
sary may gain access to private information. However, after
the original files are encrypted, the correlation between two
similar files cannot be discerned. In other words, encryption
complicates searching operations. Thus, we focus on achieving
searchable, cross-modal encryption in this article.

The concept of searchable encryption (SE) was coined to
facilitate searching and retrieval of encrypted contents that
contained a concrete query keyword [9], and since then SE
has been extended to support searching of multiple key-
words, dynamic searching, ranked searching [10], [11], and
other activities. For example, a number of SE methods have
been proposed recently to provide secure image searching,
such as label-based image searching and content-based image
searching [12]–[14]. These methods were intended mainly
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for single-modal rather than multimodal use. This is due to
the semantic gap between heterogeneous modalities, which
compounds the challenge in achieving secure cross-modal
searching.

Existing cross-modal approaches in the plaintext domain
are mainly based on subspace learning, which constructs
a common subspace and transforms the data of different
modalities to the same common subspace to compute the simi-
larity [15]–[17]. However, the performance of these traditional
approaches decreases as the volume of data increases. In other
words, when processing significant volume of the data (becom-
ing a norm in today’s landscape), the time required, the cost,
and the low accuracy of retrieval can be prohibitive.

A number of hashing-based methods have also been
proposed in recent years [18]–[21]. For example, such hashing-
based methods can embed data from different modalities
into compact binary hash codes; consequently, reducing stor-
age requirement and increasing search speed. More relevant
results are also easier to obtain when the database con-
tains (a large amount of) data in different modalities. In
other words, the hash-based methods are viable for large-
scale databases. However, these schemes simply combine the
information from heterogeneous sources of an instance and
ignore the correlations between different modalities.

More recently, deep-learning techniques have been uti-
lized in cross-modal research, for example, to discover the
latent semantic information among multiple modalities. Such
deep-learning-based schemes can be practical in the plaintext
domain. However, the training process and forward propaga-
tion phases usually involve multiple layers of network and
complex operations, which are too prohibitive to be executed
over encrypted data.

Collective matrix factorization (CMF) is an efficient
approach to learn the semantic similarity and make relational
prediction. It is more capable than hashing-based schemes in
determining the implicit information among different modal-
ities. In addition, CMF has more concise operations than
deep-learning-based schemes. Thus, CMF can be used on
encrypted data.

In this article, we explore the problem of constructing a
secure, cross-modal searching method based on CMF to cal-
culate a unified hash value for different modalities. We train
the private data sets of heterogeneous data sets to obtain
the permutation function, which can take the user’s trap-
door as input and output the secure unified feature vector.
Then, we utilize local sensitive hashing (LSH) to convert
the unified feature vectors to irreversible hash values and
locate the corresponding hash buckets to determine correl-
ative candidates. Our main contributions are summarized
as follows.

1) We design a practical, secure, cross-modal searching
scheme, hereafter, referred to as secure cross-modal
retrieval (SCMR). SCMR leverages the latent semantic
correlation between heterogeneous data, without leaking
any sensitive information.

2) This is the first attempt to introduce CMF to the
encrypted domain to address the cross-modal problem.
Our proposed approach protects the confidentiality of

data sets and the index, unlike existing cross-modal
retrieval methods (since they are not designed to do so).

3) Our scheme is efficient because only homomorphic addi-
tion and plain-text multiplication are required of the
cloud server (CS), and our scheme avoids multiround
interactions among entities.

In the next two sections, we will briefly review the
related literature and introduce the problem formulations. In
Section IV, we present our proposed approach. We then evalu-
ate its performance and security in Section V. We also compare
its performance with several plaintext methods. Then, we
conclude this article in Section VI.

II. RELATED LITERATURE

There are a number of challenges associated with preserving
privacy during cross-modal searching. For example, how can
we determine how to narrow down and ultimately eliminate
the semantic gap between heterogeneous data sources? Also,
how can we determine how to execute conventional searching
operations over encrypted multimodal data?

In recent years, researchers have proposed a number of dif-
ferent schemes that facilitate searching of single modal data.
The schemes can be broadly categorized into unsupervised
schemes and supervised schemes. The former is less reliant on
the number of instances in the data sets; thus, it is relatively
easier to adapt to databases of varying volume and is practical
for multiple scenarios. However, the performance of unsuper-
vised schemes is dependent on the data distribution, and they
have no resistance to malicious attacks. In addition, the seman-
tic gaps between low-level features and high-level semantics
can result in poor performance for unsupervised schemes.

Supervised schemes, on the other hand, reflect the seman-
tic features into a common space and have better capabilities
to dig out the potential relations of data. In [20], for exam-
ple, Bronstein et al. introduced a cross-view hashing (CVH)
model, designed to solve the generalized eigenvalue problem
and minimize the multiview Euclidean distance between het-
erogeneous pairs of data. Another scheme proposed in [22],
intermedia hashing (IMH) also reflects multiview data into
a common hamming space to protect both intermedia sim-
ilarity and intramedia similarity. Song et al. [18] proposed
an approach called cross-modality similarity search hashing
(CMSSH), which embeds heterogeneous data into a com-
mon subspace and trains the hash functions with using
Eigen decomposition. These hashing-based schemes outper-
form other traditional methods because they speed up the
process and have low time cost even for large-scale databases.
In other words, the hashing-based schemes are more useful
for real-world applications. However, such schemes ignore the
latent correlations between different modalities.

The deep-learning techniques have also been used exten-
sively to solve cross-modal searching problems [23]–[28].
They can extract the latent information among multiple modal-
ities and learn the semantic feature of data points. However,
it remains a challenging problem to determine how one can
achieve the same performance in protecting consistency among
heterogeneous encrypted data.
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Fig. 1. System model.

Similarity searching protocols over simple-view encrypted
data is another emerging research topic. The develop-
ment of simple-view, secure, similarity searching, such as
multikeyword searching, secure high-dimensional data search-
ing, and secure image searching, has also contributed to
advances relating to secure, cross-modal searching.

There have also been advances in approaches designed for
secure, content-based searching of images. These schemes that
extract features of images take into account the semantic gap
between images and texts, which perfectly matches the aim
of cross-modal retrieval. CMF was first proposed to predict
unknown values for relational learning, which is an efficient
approach for determining the semantic similarity between mul-
timodalities. Compared with other supervised schemes, such
as deep-learning and convolutional neural networks, CMF has
a more concise training process with less computational com-
plexity; thus, it is a viable candidate for applications involving
encryption.

In this article, we also focus on protecting the consistency
of multimodal data resources, without potentially leaking their
sensitive information. Specifically, our proposed approach is
one of the first to combine both CMF and homomorphic
encryption (HE), in order to facilitate the cross-modal retrieval
in the encrypted domain. Specifically, HE allows us to per-
form calculation of secure unified feature vectors and protect
the confidentiality of data. In order to speed up the search-
ing process, we construct a secure index using LSH. We will
demonstrate that our scheme has more (powerful) capabilities
than simple-modal schemes and provide better privacy pro-
tection than competing cross-modal schemes in the plaintext
domain, later in this article.

In the next section, we will explain the system and security
models, and relevant background materials.

III. PROBLEM FORMULATION

A. System Model

In this article, we consider an SCMR scheme comprising
the following three entity types—see also Fig. 1.

1) A data owner (DO) who holds private data of dif-
ferent modalities. To reduce the storage requirements
and the computational complexity, as well as ensuring
the security of the private data, the DO would like to
encrypt the data sets and outsource them to the CS.

Thus, the DO must first execute CMF using the original
image-text pairs to obtain the parameters and unified
feature vectors. Then, the DO encrypts all of these files
and outsources them to the CS.

2) An honest-but-curious CS, which establishes a secure
index using LSH. When a user submits a query, the CS
computes the unified feature vector of the query using
encrypted parameters. Then, the CS calculates the hash
value in a privacy-preserving manner to locate the exact
hash bucket before returning all corresponding results to
the user.

3) Several users. When a user requests for relevant images
or texts, (s)he must establish a connection with the DO
to obtain a secret key to be used for decryption. Then,
(s)he extracts the feature vector of an image or a text in
the same manner as the DO and sends the query to the
CS. When the user receives the encrypted results from
the CS, (s)he could use the secret key to decrypt the
encrypted results.

B. Security Model

In this article, we assume that the CS is honest, but curi-
ous. In other words, the CS will faithfully follow the proposed
scheme and return the correct results to the users, and the CS
will not collude with others to obtain the secret key. However,
the CS may be sufficiently curious about the outsourced data
and attempt to deduce information beyond the ciphertexts.
Based on the limited data that are available (encrypted data
sets, encrypted unified feature vectors, encrypted hash values,
encrypted projection matrices, and users’ queries), we con-
clude the attack model of an adversary is a ciphertext only
attack (COA) model, in which the CS has the encrypted data
sets, encrypted unified feature vectors, encrypted hash values,
encrypted projection matrices, and user queries.

Under this attack model, our proposed scheme needs to pro-
vide semantic security for both DO and user. In particular, the
following aspects of security should be ensured.

1) File Privacy: Since the original data contains sensi-
tive information, the CS cannot learn their plaintext by
simply analyzing the encrypted data.

2) Parameter Privacy: Since the parameters (i.e., projection
matrices) reflect the correlation of original data and their
unified feature, they cannot be deduced by the CS.

3) Trapdoor and Index Privacy: Since the query and index
reflect the relations between the query and correspond-
ing plaintext, the CS cannot deduce their content by
simply analyzing the encrypted information.

C. Preliminaries

1) Collective Matrix Factorization: CMF, proposed by
Singh and Gordon [29], can deeply mine the latent seman-
tic relationship between heterogeneous entities to facili-
tate prediction and recommendation. CMF jointly factorizes
multiple relations of different types and learns a common
space that contains the semantic information. We use CMF
to learn the unified feature vector of an image-text pair to
address cross-modal retrieval.
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2) Homomorphic Encryption: In order to compute the
unified feature vector of a query, the DO encrypts the param-
eters using the Paillier cryptosystem [30], which supports
homomorphic computation. The details are described below.

First, choose two large primes, p and q, and let N= pq.
Also, let ZN2 = {0, 1, . . . , N2 − 1} and Z∗

N2 ⊂ ZN2 denote
the set of non-negative integers that have multiplicative
inverse modulo, N2. Select g ∈ Z∗

N2 which satisfies
gcd(L(gλ mod N2), N) = 1, where λ = lcm(p − 1, q − 1).
Let λ denote the private key and (N, g) be the public key.

Given (N, g) and the plaintext denoted as m ∈ ZN(m < N),
the ciphertext of m is computed as

c = Epk(m, r) = gmrN mod N2. (1)

In the above formula, r ∈ Z∗N ⊂ {0, 1, . . . , N − 1}
denotes the randomly chosen number that enables the Paillier
cryptosystem to satisfy the semantic security.

To decrypt the ciphertext, c, we compute the following
formula using the private key λ:

m = Dsk(c, λ) = L
(
cλ mod N2

)

L
(
gλ mod N2

) mod N. (2)

In the above formula, L(u) = (u− 1)/N.
The Paillier cryptosystem provides additive homomorphism

because

c1 × c2 = Epk(m1, r1)× Epk(m2, r2)

= g(m1+m2)(r1r2)
N mod N2. (3)

It also provides plaintext multiplication

Dsk([Epk(m1, r1)]
m2 mod N2) = (m1 × m2) mod N. (4)

3) Locality-Sensitive Hashing: LSH was proposed by
Gionis et al. [31]. LSH can hash relevant objects to the
same bucket with a very high probability, and dissimilar data
points probably will be hashed to different buckets. LSH has
been used for solving approximate nearest neighbor (ANN)
problems. The definition of LSH is shown as follows.

Let S be the set of data objects and D be the distance, we
have B(q, r) = {p : D(q, p) ≥ r}, where q is a query object.

Definition 1: A function family H = {h : S→ U} is called
(r1, r2, p1, p2) sensitive for D if for any q, p, p′ ∈ S:

1) if p ∈ B(q, r1) then PrH[h(q) = h(p)] ≥ p1;
2) if p /∈ B(q, r2) then PrH[h(q) = h(p′)] ≤ p2.
If D is a dissimilarity measure, there must be p1 > p2 and

r1 < r2. If D is a similarity measure, there must be p1 > p2
and r1 > r2.

IV. PROPOSED SCHEME

In this section, we introduce our proposed SCMR method.
First, we present SCMR in the image-text case, because it is
easily understood.

A. Overview of SCMR

Suppose that O = {oi}ni=1 is the set of objects, and
X(1) = [x(1)

1 , . . . , x(1)
n ], and X(2) = [x(2)

1 , . . . , x(2)
n ] are two

different modalities of O, where x(1)
i ∈ R

d1 , x(2)
i ∈ R

d2

Fig. 2. Framework of the proposed scheme.

(usually d1 
= d2). Given a query, our proposed scheme is
supposed to compute the unified feature vector, fi, for oi,
i = 1, 2, . . . , n, and satisfy that fi, fj preserve the similarity
between oi, oj with high probability.

Our proposed SCMR method comprises the following
six algorithms: KeyGen, BuildIndex, Enc, Trapdoor, Search,
and Dec.

(K, pk, sk) ← KeyGen (1k): A security parameter k is cho-
sen as the input, and this algorithm generates the symmetrical
key, K, and the homomorphic key pair, (pk, sk).

Index ← BuildIndex (O): Given the original data sets, the
DO executes this algorithm to determine the unified feature
vectors of each object in O using CMF and computes the
corresponding hash value as its index using LSH. Then, this
algorithm outputs the index structure in plaintext form.

(I,P)← Enc (Index, Param, K, pk): Given the Index, train-
ing parameters Param, symmetrical key K, and homomorphic
public key pk, the DO runs this algorithm to output the cipher-
text, P , of Param and the encrypted index structure, I. Only
the original data sets are encrypted by K, and the other data
are encrypted by the Paillier cryptosystem.

Tq ← Trapdoor (Query): Given a query image or a query
text, the user runs this algorithm with the help of the DO to
generate the search token (or trapdoor), Tq, and sends it to CS.
{c} ← Search (Tq, I): After receiving the search token, Tq,

CS runs this algorithm to search for relevant encrypted files
and returns them to the user. {c} is the set of the ciphertext of
the results.
{m} ← Dec ({c}, K): This algorithm decrypts the cipher-

text and obtains the original data set, {m}, with the help of K
received from the DO.

As shown in Fig. 2, our SCMR scheme can be divided
into two parts, namely, the offline setup phase and the online
searching phase.

In the setup phase, the DO first uses the algorithm KeyGen
to create the secret keys. Here, two different kinds of cryp-
tosystems are used for encryption. More specifically, the DO
uses symmetrical encryption for the original data sets because
these data sets contain large amounts of files, and symmetrical
encryption will reduce the computational complexity and
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increase the efficiency. However, the parameters are encrypted
by the Paillier cryptosystem because they are indispensable
computational components in the following phases. Then, the
DO executes BuildIndex to train the original data sets and
assort these data to different hash buckets according to their
hash values. The hashing structure is a very fast way of search-
ing, and it is feasible to construct the index structure. Finally,
all of the prepared data are encrypted by Enc and outsourced
onto CS.

In the searching phase, the authorized user that has a search
requirement runs Trapdoor to generate a search token. During
this part, the DO sends information concerning how to extract
the features and sends the symmetrical key, K, to the user,
so that the user can process the query and generate the corre-
sponding trapdoor. Once a trapdoor has been submitted, the CS
carries out the Search algorithm. Particularly, the CS securely
computes the unified feature vector of the query and obtains
its hash value. Then, the CS locates the corresponding bucket
and returns the candidates in the bucket to the user. Finally,
the user runs Dec to decrypt the encrypted data using K given
by the DO.

In addition, as the database increases in size, the DO could
retrain the data to learn new projection matrices and update
them with the CS, in order to provide more accurate search
results.

B. Construction of SCMR

In this part, we introduce the details of the construction of
our SCMR scheme.

1) (K, pk, sk)← KeyGen (1k): In this article, the DO uses
symmetrical encryption for the original data sets, such as DES
and AES. As for encrypting the parameters, we introduce the
details of the Paillier cryptosystem in Section III-B.

2) Index← BuildIndex (O): First, we introduce the details
of how to learn the unified feature vectors.

As mentioned in Section III-A, matrix factorization is a fea-
sible approach to learn the latent semantic information of the
original data using the following formula:

X(t) = UtVt ∀t (5)

where Ut ∈ R
dt×k, Vt ∈ R

k×n, and k is the length of the
latent semantic feature. More specifically, each column, vi, of
V is the latent semantic feature vector of the corresponding
column, xi, of X. As for multiple modalities of data, we assume
that the similar heterogeneous objects should have the same
latent semantic feature, based on which we jointly decompose
X(1), X(2) with the constraint V1 = V2 = V

λ

∥∥∥X(1) − U1V
∥∥∥

2

F
+ (1− λ)

∥∥∥X(2) − U2V
∥∥∥

2

F
(6)

where λ is a balance parameter. This formula is only applicable
for objects in X(1) and X(2); as for out-of-sample objects, a
projection function is learned to transform an instance to the
corresponding latent semantic feature

Yt(x
(t)) = Ptx

(t) + at ∀t (7)

where Pt ∈ R
k×dt is the projection matrix and at ∈ R

k is the
offset unit vector.

Algorithm 1 CMF
Input:

Data matrix X(t), t = 1, 2, parameters λ,μ, γ, k
Output:

Unified feature vectors V, projection matrices Pt, t = 1, 2
Initialize Ut, Pt by random matrices, t = 1, 2.
repeat

Fix Ut, Pt, update V by Formula (6), t = 1, 2;
Fix Ut, V update Pt by Formula (7), t = 1, 2;
Fix Pt, V update Ut by Formula (8), t = 1, 2;

until convergency.
return V, Pt, t = 1, 2

To summarize the loss mentioned above, the overall objec-
tive loss function consists of the CMF loss in (2), the
projection loss in (3), and the regularization term

minimize
U1,U2,P1,P2,V

L(U1, U2, P1, P2, V) (8)

where

L = λ

∥∥∥X(1) − U1V
∥∥∥

2

F
+ (1− λ)

∥∥∥X(2) − U2V
∥∥∥

2

F

+ μ

(∥∥∥V − P1X(1)
∥∥∥

2

F
+
∥∥∥V − P2X(2)

∥∥∥
2

F

)

+ γ R(U1, U2, P1, P2, V) (9)

where μ and γ are tradeoff parameters, and R(·) = || · ||2F is
the regularization term to avoid overfitting.

The nonconvex optimization problem (8) becomes solvable
only if we learn one matrix at a time with the other four
variables fixed.

Fix Pt, V , let (∂G/∂Ut) = 0, t = 1, 2, then

Ut = X(t)VT
(

VVT + γ

λt
I

)−1

(10)

where λ1 = λ, λ2 = 1− λ, I is the identity matrix.
Fix Ut, V , let (∂G/∂Pt) = 0, t = 1, 2, then

Pt = VtX
(t)T
(

X(t)X(t)T + γ

μ
I

)−1

. (11)

Fix Ut, Pt, let (∂G/∂V) = 0, t = 1, 2, then

V =
(

2∑

t=1

λtU
T
t Ut + (2μ+ γ )I

)−1

×
(

2∑

t=1

(
λtU

T
t + μPt

)
X(t)

)

. (12)

Algorithm 1 shows the entire procedure.
After obtaining the unified feature vectors of each object,

the DO must compute their hash values and construct the index
structure.

We chose the normal Euclidean distance as the assessment
criterion of the relevance between two objects, and its LSH
formula is computed as follows:

H(v) = |vR+ b|
a

(13)
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Fig. 3. Index structure.

Algorithm 2 Ciphertext Genaration
Input:

Index = {O,F ,H}, Param = {Pt}(t = 1, 2), K, pk
Output:
I,P
Initialize Ut, Pt by random matrices, t = 1, 2.

for each object oi ∈ O do
Encrypt oi with symmetrical key K;

end for
for each unified feature vector fi ∈ F do

Encrypt fi with public key pk;
end for
for each hash value hi ∈ H do

Encrypt hi with public key pk;
end for
for each projection matrix Pt ∈ Param do

Generate a random invertible dt × dt matrix Mt;
Encrypt PtMt with public key pk;

end for
return I,P

where R is a random vector, a is the size of each bucket, and
b ∈ [0, a] is a uniformly distributed random variable. Note that
it is (a/2, 2a, 1/2, 1/3)−sensitive, and (R, a, b) is available
to CS.

Fig. 3 shows the structure of the final index. Assume that
o1 and o2 have the same hash value and that o3 and o4 have
the same hash value. Different objects that have the same hash
value will be assorted into the same hash bucket, which means
there is a very high probability that they are similar.

3) (I,P) ← Enc (Index, Param, K, pk): Fig. 3 shows that
an index structure contains the original data set O = {oi}ni=1,
the unified feature vectors F = {fi}ni=1, and the hash values
H = {hi}ni=1. The training parameters of CMF consist of the
projection matrices Pt(t = 1, 2). The encryption algorithm is
shown in Algorithm 2.

4) Tq ← Trapdoor (Query): In this part, we assume that
the user has been authorized and that the data communications
are conducted over secure channels, which can be established
using standard mechanisms such as SSL.

Under these circumstances, the DO tells the user how to
extract the feature in the same way as the DO does, and
the user obtains feature vector, vt, of Query. Also, the DO

Algorithm 3 Homomorphic Multiplication
Input:

Encrypted matrix E(Wm×n)

Plaintext vector Vn×1
Output:

E(WV)
Generate a vector Rn×1
for 1 ≤ i ≤ m do

sum = E(0);
for 1 ≤ j ≤ n do

Compute temp = E(wij)vj;
Compute sum = sum× temp;

end for
Ri = sum;

end for
return R

sends the random invertible matrices, Mt, and the symmetrical
key, K, to the user. Then, the user computes Tq = M−1

t v and
submits Tq to CS.

5) {c} ← Search (Tq, I): Once search token Tq has been
received, CS computes the secure unified feature vector of
Tq using the additive homomorphism and plaintext multipli-
cation properties of the Paillier cryptosystem mentioned in
Section III-B.

First, we introduce Algorithm 3 to homomorphically com-
pute the product of an encrypted matrix and a plaintext vector.
Assume that W is an m× n matrix and that wij is the element
located in the ith row and jth column. Similarly, E(W) is the
encrypted form of W, and E(wij) is the element located in the
ith row and jth column. In addition, V is an n× 1 vector, and
vi is the ith element of V .

Algorithm 3 can compute the product of E(W) and V
securely. Initially, it generates a random, n-dimensional vec-
tor, Rn×1, for the temporary storage of data. For 1 ≤ i ≤ n,
it computes the product of the ith row of E(W) and V using
the properties of the Paillier cryptosystem, including plaintext
multiplication (E(a)b = E(ab)) and additive homomorphism
(E(a)×E(b) = E(a+b)) and gives the result to the ith element
of R. Finally, it outputs the multiplication result of E(W) and
V in encrypted form.

According to Algorithm 3, CS can securely compute the
unified feature vector of the query

Epk(fq) = Epk(PtMt)
Tq

= Epk(PtMt)
M−1

t v

= Epk

(
PtMtM

−1
t v

)

= Epk(Ptv). (14)

Next, CS computes the secure hash value of the query.
Similarly, CS can calculate the hash value as follows:

Epk
(
hq
) =

(
Epk

(
fq
)R × Epk(b)

)1/a

= (Epk
(
fqR
)× Epk(b)

)1/a

= (Epk
(
fqR+ b

))1/a

= Epk

(
fqR+ b

a

)
. (15)

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on August 17,2020 at 17:06:34 UTC from IEEE Xplore.  Restrictions apply. 



3110 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 4, APRIL 2020

Then, CS can locate the hash bucket according to the secure
hash value of the query with the time complexity of O(1) and
return the encrypted files {c} in the bucket to the user.

6) {m} ← Dec ({c}, K): In this part, the user receives the
encrypted candidates, {c}, from CS. These files were encrypted
under symmetrical key, K, which was sent from the DO earlier.
Therefore, the user only needs to decrypt the secure files to
obtain the original image/text files.

V. EVALUATION

In this section, we evaluate the performance of our proposed
SCMR scheme in terms of security and searching accuracy.

A. Security Analysis

In this part, we discuss how our SCMR scheme resists the
attacks from an honest-but-curious CS and protects the privacy
under COA.

1) Parameter Privacy: Assume there have been s rounds
of the retrieval of different queries, which means the CS has
accumulated a set of trapdoors defined as Tp = {t1, t2, . . . , ts}
and their corresponding unified feature vectors {Epk(Fq) =
Epk(f1), Epk(f2), . . . , Epk(fs)}. For ease of explanation, we
define the secure parameter matrices, Epk(PtMt), t = 1, 2,
as Epk(X). Accordingly, the CS can formulate the following
equations:

⎧
⎪⎪⎨

⎪⎪⎩

∏d
i=1 Epk(x1i)

ti1 = Epk(fi1)∏d
i=1 Epk(x1i)

ti2 = Epk(fi2)
· · ·∏d

i=1 Epk(x1i)
tis = Epk(fis).

(16)

Then, the CS computes the logarithm to the base g, where
g is the public key used for HE. Thus, (16) can be converted
as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑d
i=1 ti1 logg

(
Epk(x1i)

) = logg

(
Epk(fi1)

)
∑d

i=1 ti2 logg

(
Epk(x1i)

) = logg

(
Epk(fi2)

)

· · ·∑d
i=1 tis logg

(
Epk(x1i)

) = logg

(
Epk(fis)

)
.

(17)

Ideally, Epk(x1i) = gx1i rNmod N2. Thus, (17) can be
computed as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑d
i=1 ti1x1i + N logg r ·∑d

i=1 ti1 = logg

(
Epk(fi1)

)
∑d

i=1 ti2x1i + N logg r ·∑d
i=1 ti2 = logg

(
Epk(fi2)

)

· · ·∑d
i=1 tisx1i + N logg r ·∑d

i=1 tis = logg

(
Epk(fis)

)
(18)

when s > d, there exists solution(s) for these linear equations;
thus, the CS may calculate the plaintext of Epk(PtMt), t = 1, 2
after several rounds of searching.

However, the probability of recovering a pseudo-random
permutation is negligible. In other words, even if the CS knows
the value of PtMt, t = 1, 2, (s)he cannot guess the value of
Pt, t = 1, 2. Thus, we can say that our scheme protects the
privacy of parameters.

2) File Privacy: In this article, the original data sets were
encrypted under symmetrical cryptosystem, and they are inde-
pendent from the following searching part. Only the authorized
users have the secret key to decrypt them, which means that
CS and illegal users have no access to these data. Thus,
we can say that the privacy of the original files is well
protected.

3) Trapdoor Privacy: In this article, the CS must compute
the unified feature vector of each query using homomorphic
addition and plain-text multiplication.

Let A be an adversary from a random oracle O. We define
the advantage for A getting any additional information of the
query image/text to be AdvPPIS

A .
Lemma 1: AdvPPIS

A ≤ Pr[E1] + Pr[E2] ≤ ε1 + ε2, where
E1 is the event that A recovers a pseudo-random permutation,
and E2 is the event that A recovers an image or a content only
with its feature vector.

Proof: In the Trapdoor algorithm, the user extracts the
feature vector of query and permutates it before submitting to
the CS. Hence, the advantage AdvPPIS

A for A is the addition of
Pr[E1] and Pr[E2], at most.

Shoup [32] proved that the advantage for an adversary,
A, breaking a pseudo-random permutation was negligible.
For example, suppose that the length of the feature vec-
tor is d. If the adversary wants to guess the correct vector
before permutation, the probability is 1/O(d!). In the poly-
nomial time, it is impossible for the adversary to guess the
original feature vector, which means that Pr[E1] ≤ ε1 is
negligible.

Feature extracting is a unidirectional process and, obviously,
the probability of recovering an image or a text only by its
feature vector is negligible.

Therefore, the advantage AdvPPIS
A ≤ Pr[E1] + Pr[E2] ≤

ε1 + ε2 for A to obtain any additional information from O
is negligible.

4) Index Privacy: Let A be an adversary from a ran-
dom oracle, O. We define the advantage for A′s getting any
additional information from the index to be AdvPPIS

A .
Lemma 2: AdvPPIS

A ≤ Pr[E3] + Pr[E4] ≤ ε3 + ε4, where
E3 is the event that A recovers a hashing function and E4 is
the event that A distinguishes the differences between the two
sequences, Epk(X) and Epk(Y), using the Paillier cryptosystem.

Proof: During the Secure algorithm, CS calculates the
hash value of the query and locates the corresponding hash
bucket to obtain correlative candidates in the homomorphic
cryptosystem. Hence, the advantage AdvPPIS

A for A is, at most,
the addition of Pr[E3] and Pr[E4].

Hashing is a unidirectional process, in the polynomial time,
and it is impossible for the adversary to recover an input by
its hash value, which means that Pr[E3] ≤ ε3 is negligible.

If an event, E2, occurs with a probability greater than ε2, it
means that A could construct a simulator that has the advan-
tage greater than ε2 to break the Paillier cryptosystem. As
long as the Paillier cryptosystem provides semantic security,
it is inconsistent with the fact. Therefore, the advantage for A
breaking the Paillier cryptosystem is Pr[E4] ≤ ε4.

Finally, the advantage AdvPPIS
A ≤ Pr[E3]+Pr[E4] ≤ ε3+ε4

for A to obtain any information from O is negligible.
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B. Experimental Performance

In this section, we evaluated our SCMR scheme by carrying
out several experiments using different data sets. These eval-
uations were performed using an Intel Core i5-3230M CPU
at 2.60 and 3.85 GB of memory. The aim was to verify the
efficiency and accuracy of SCMR.

1) Data Sets:
Wikipedia [33]: It is a set of 2866 image–text pairs contin-

ually selected by Wikipedia’s editors. In this collection, each
image has a corresponding SIFT feature, and each text was
split into several sections and represented by the 10 most
popular categories among the 29 categories.

NUS-WIDE [34]: It is a collection of more than 260 000
real-world images. Each of these images has at least one tag
among 5018 nonrepetitive tags provided by Flickr’s users.
It also provides various types of feature representations for
different experimental requirements.

IAPR-TC12 [35]: This data set is comprised of 20 000
images collected from various scenarios. Each of them is
pruned to the size of 256×256×3 and has at least one text
caption. Every text describing its data point was a 2912-D
bag of words (BOW) feature vector.

2) Baseline Methods: In this article, we evaluated our
proposed approach with five other state-of-art cross-modal
methods, namely, CVH [20], IMH [22], CMSSH [18],
DVSH [27], and DCMH [28]. CVH, IMH, and CMSSH are
classical hashing-based methods that embed data of differ-
ent modalities into a common subspace. DVSH and DCMH
are deep-learning-based methods with high accuracy. We
implemented these methods in the plaintext domain only for
comparing the searching accuracy.

We chose the following two criteria to evaluate the retrieval
performance: 1) the precision–recall curve and 2) the mean
average precision (mAP). The average precision (AP) can be
calculated as

AP = 1

L

R∑

i=1

P(i)× δ(i). (19)

In the above equation, L is the number of relevant data
points that are recognized correctly, P(i) is the precision of
the top i searching results, and δ(i) is 1 if the ith result is
relevant to the query, and it is 0 otherwise.

3) Results and Discussion: Table I lists the mAP values
for our proposed SCMR scheme and the other five baseline
protocols. Although DCMH has the highest mAP values, our
proposed SCMR is almost comparable with it. SCMR focuses
on achieving accurate cross-modal searching, and it also pro-
tects the DO and users from leaking sensitive information to
unauthorized entities (as discussed in Section V-A).

The searching performance over multilabel data sets was
better than the single-class data set, Wikipedia. This is rea-
sonable because multiple labels provide much more semantic
information. Another factor that influences the searching
performance is the size of the hash codes, because longer hash
codes decrease the probability of collision and provide more
space for embedded information. However, the indiscrimina-
tive size of hash codes may become useless for improving the

Fig. 4. PR-curves on wikipedia varying hash code length.

Fig. 5. PR-curves on NUS-WIDE.

Fig. 6. PR-curves on IAPR-TC12.

accuracy of searches because the low bits in the hash codes
decrease as the size increases, ultimately resulting in the loss
of semantic information.

Fig. 4 shows the PR-curves in the Wikipedia data set that
vary the length of the hash codes. Fig. 5 shows the PR-
curves on NUS-WIDE, and Fig. 6 shows the PR-curves on
IAPR-TC12. It is apparent that our SCMR scheme performed
comparably with these deep-learning, cross-modal schemes.
In addition, searching images by texts is more accurate than
the opposite way, because images have more abundant and
abstractive semantic information than words.

The introduction of Paillier HE ensures the semantic secu-
rity of our proposed SCMR scheme as demonstrated in
Section V-A. However, the computation of query’s unified fea-
ture vector and its hash value is executed in the encrypted
domain and the time cost is another significant focus because
it relates to user experience. Here, we mainly discussed the
time cost of Search phase because it involves most of the
homomorphic operations.
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TABLE I
MAP COMPARISON TASKS

Fig. 7. Time cost of secure searching phase.

As described in Section IV-B, CS securely computes the
query’s unified feature vector according to Algorithm 3. It can
be observed that the time cost of Algorithm 3 is affected by
the size of input, and there are two main operations, namely,
homomorphic addition and plaintext multiplication. Assume
that the length of a query vector is d and the length of unified
feature vector is k, there will be k × d times of both homo-
morphic addition and plaintext multiplication operations. In
addition, the calculation of hash value involves two times of
both homomorphic addition and plaintext multiplication.

Fig. 7 shows the time cost of different length of k and d. It
can be observed that the time cost grows almost linearly with
the increase of k. In this article, the scheme we proposed is
a similar retrieval and not an exact retrieval. In other words,
more candidates will be better than less. Thus, a shorter k
will remove some inconsequential attributes and provide more
results, and at the same time lead to reduced time cost. Even
for a 512-D query vector, the time cost to compute the 500-D
secure unified vector is less than 1.5 m, which is acceptable
for a semantic secure scheme.

VI. CONCLUSION

In this article, we introduced an SCMR process to achieve
efficient and accurate cross-modal searching in the encrypted
domain. SCMR combines the semantic security of HE and the
inherent characteristics of CMF for similar searching. Using
LSH to build the structure of the index further increases the
efficiency and security of SCMR. The experimental results on
different kinds of data sets demonstrated that SCMR outper-
forms several state-of-the-art cross-modal searching schemes.

Future research includes deploying a prototype of SCMR,
in collaboration with a real-world service provider to evaluate
its scalability and real-world utility.
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