
67

A Survey on Ethereum Systems Security: Vulnerabilities,

Attacks, and Defenses

HUASHAN CHEN, The University of Texas at San Antonio, USA

MARCUS PENDLETON, U.S. Air Force Research Laboratory and 90 COS/CYD

LAURENT NJILLA, U.S. Air Force Research Laboratory

SHOUHUAI XU, The University of Texas at San Antonio, USA

Blockchain technology is believed by many to be a game changer in many application domains. While the first

generation of blockchain technology (i.e., Blockchain 1.0) is almost exclusively used for cryptocurrency, the

second generation (i.e., Blockchain 2.0), as represented by Ethereum, is an open and decentralized platform

enabling a new paradigm of computing—Decentralized Applications (DApps) running on top of blockchains.

The rich applications and semantics of DApps inevitably introduce many security vulnerabilities, which have

no counterparts in pure cryptocurrency systems like Bitcoin. Since Ethereum is a new, yet complex, system, it

is imperative to have a systematic and comprehensive understanding on its security from a holistic perspec-

tive, which was previously unavailable in the literature. To the best of our knowledge, the present survey,

which can also be used as a tutorial, fills this void. We systematize three aspects of Ethereum systems security:

vulnerabilities, attacks, and defenses. We draw insights into vulnerability root causes, attack consequences,

and defense capabilities, which shed light on future research directions.

CCS Concepts: • Security and privacy → Distributed systems security;

Additional Key Words and Phrases: Blockchain, Ethereum, smart contract, security

ACM Reference format:

Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. 2020. A Survey on Ethereum Systems

Security: Vulnerabilities, Attacks, and Defenses. ACM Comput. Surv. 53, 3, Article 67 (June 2020), 43 pages.

https://doi.org/10.1145/3391195

1 INTRODUCTION

The notion of blockchain was implicitly introduced in 2008 as the key underlying technique of the
cryptocurrency known as Bitcoin [148], which uses a transaction-centered model known as unspent
transaction outputs (UTXO). In this model, a blockchain is a distributed and public ledger, which
records the payment transactions between parties over a peer-to-peer (P2P) network. Unlike tradi-
tional digital cash systems [80], in which there is a trusted third party (e.g., bank), there is no trusted

This research was supported in part by US AFRL Grant No. FA8750-19-1-0019, ARO Grant No. W911NF-17-1-0566, NSF

Grant No. 1814825, and NSF CREST Grant No. 1736209. The views and opinions of the authors do not reflect those of the

US DoD, AFRL, ARO, or NSF.

Authors’ addresses: H. Chen and S. Xu (corresponding author), One UTSA Circle, University of Texas at San Antonio, San

Antonio, TX 78249; emails: {huashan.chen, shouhuai.xu}@utsa.edu; M. Pendleton, 250 Hall Blvd., Suite 359, San Antonio,

Texas 78243-7078; email: marcus.pendleton.2@us.af.mil; L. Njilla, 26 Electronics Parkway, Rome, New York 13441; email:

laurent.njilla@us.af.mil.

ACM acknowledges that this contribution was authored or co-authored by an employee, contractor, or affiliate of the

United States government. As such, the United States government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for government purposes only.

© 2020 Association for Computing Machinery.

0360-0300/2020/06-ART67 $15.00

https://doi.org/10.1145/3391195

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

https://doi.org/10.1145/3391195
https://doi.org/10.1145/3391195

67:2 H. Chen et al.

third party in a blockchain system in general, and in Bitcoin in particular. Bitcoin is often referred
to as Blockchain 1.0, because it only offers payment services. The innovation of the Bitcoin system
is its consensus protocol, which allows mutually distrusting nodes in a P2P network to eventu-
ally reach a consensus on the outcome after executing payment transactions. Unlike traditional
consensus protocols [100], the participants are from an open network and are incentivized by the
payment of Bitcoins (or BTCs), which are “mined” through a clever cryptographic hash function
known as Proof-of-Work (PoW), an idea originally proposed as an anti-spam technique [95].

Perhaps inspired by the success of Bitcoin as well as the need to support semantically richer
(than just payment) applications, the notion of smart contracts has been introduced to represent
autonomous programs, leading to a new paradigm of Decentralized Applications (DApps) that run
on top of blockchains and consist of many interacting smart contracts. The Ethereum system was
launched in 2015 to support smart contracts, while offering its inherent cryptocurrency known as
Ether [184] and using an account-centered model (rather than the UTXO model mentioned above).
Ethereum has become the de facto standard platform for DApps. At the moment of writing, the
market value of Ethereum is over US$31B with approximately one million smart contracts execut-
ing on top of the Ethereum blockchain [56]. The success of Ethereum ushers in Blockchain 2.0,
which has many applications in Artificial Intelligence [165], Internet of Things [62, 122, 172], and
digital assets [113, 114].

However, supporting rich applications makes Ethereum have a large vulnerability surface, as
evidenced by the many high-profile attacks. One example is the DAO attack [5] in 2016, where an
attacker exploited the reentrancy vulnerability (which will be detailed later) to steal about US$60M.
In July 2017, a vulnerability in the Parity wallet contract caused the loss of US$31M [19]. In April
2018, the MyEtherWallet wallet fell victim to a BGP and DNS hijacking attack, enabling the hacker
to steal US$17M [26]. These attacks highlight that our capabilities in securing the Ethereum sys-
tem are limited. This should not be taken as a surprise, because Ethereum is a new programming
paradigm with DApps running on top of blockchains with many autonomous contracts.

The motivation of the present survey is threefold, to serve researchers, practitioners, and stu-
dents. From the standpoint of a researcher who wants to investigate Ethereum security, there is
a need for a source of systematized treatment on the problems. Despite the fact that there have
been some surveys, they did not offer a systematic and comprehensive view on Ethereum vulner-
abilities, attacks, and defenses as we do. While referring to the related prior work in Section 1.2
for details, we mention the following: There is neither systematic understanding of the Ethereum
vulnerabilities that have been discovered, nor systematic understanding of their root causes; this
may explain why there are still a number of vulnerabilities that are completely open. From the
standpoint of a practitioner, there is a need for a source of best practices and guiding principles.
Industry has conducted due diligence in summarizing many best practices [49], which, however,
may overwhelm practitioners. Therefore, it might be more useful to have a small number of guid-
ing principles that are easier to adopt in practice. From the standpoint of a student who wants to
learn about Ethereum security, there is a need for a succinct yet comprehensive and systematic
source that also offer references to materials of greater details.

1.1 Our Contributions

We provide a systematic and comprehensive survey on Ethereum systems security, where “sys-
tematic” means that vulnerabilities, attacks, and defenses as well as the relationships between them
are accommodated and “comprehensive” means that it covers both the layer Ethereum platform
and the environment in which Ethereum operates. In terms of vulnerabilities, we enumerate 40
types of Ethereum vulnerabilities at layers of the Ethereum architecture and systematize their
root causes. Some of our insights are highlighted as follows. (i) Authentication and authorization

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:3

failures in Ethereum smart contracts are a major problem, which calls for standardized, stronger
identity management solutions and access control mechanisms. (ii) External dependence makes it
hard, if not impossible, to assure the security of Ethereum smart contracts, highlighting the impor-
tance of enforcing security controls on external calls. (iii) Incompetent Ethereum smart contract
programming introduces many new kinds of vulnerabilities, highlighting the importance of stan-
dardizing domain-specific best practices for the new programming paradigm. (iv) The unreliability
of Solidity makes Ethereum smart contracts vulnerability-prone, highlighting the importance of
reliable programming languages. (v) Arbitrary choices of parameters in Ethereum specification
and implementation cause many vulnerabilities in Ethereum, highlighting the importance of exe-
cuting the “open design” principle. (vi) Vulnerabilities in Ethereum are harder to cope with than
vulnerabilities in other systems, hinting that Ethereum blockchain is inherently more complex.

In terms of attacks, we systematize 29 attacks against Ethereum according to the layers of the
Ethereum architecture. We relate these attacks to the vulnerabilities and systematize their conse-
quences. Some of our insights are highlighted as follows. (i) Ethereum blockchain has two security
barriers: permissionless (allowing attackers to exploit vulnerabilities at will) and immutability (dis-
abling the vulnerability-patching mechanism widely used in cyber defense). (ii) While application-
layer attacks have caused huge financial losses, the damage did not spread to the host computers
because of the EVM isolation. (iii) Code-reuse in smart contracts can impose a higher risk than
its counterpart in traditional systems, highlighting the importance of security auditing on widely-
reused smart contracts and libraries.

We systematize 51 defenses into two classes: proactive defenses, which aim to prevent attacks;
and reactive defenses, which aim to cope with hidden vulnerabilities. We present a deeper analysis
according to defenses’ capabilities. Some of our insights are highlighted as follows: (i) Proactive
defenses can defend against attacks exploiting many vulnerabilities; reactive defenses can defend
against attacks exploiting a few vulnerabilities. (ii) There is no single silver-bullet defense at the
application layer, let alone the entire Ethereum system, highlighting the necessity of defense-in-
depth. (iii) A better programming language can not only make smart contracts more secure but
also achieve a higher degree of fault-tolerance. (iv) There is a large discrepancy between the efforts
that have been invested to defend against attacks that exploit different vulnerabilities.

Although the present article focuses on the Ethereum system, the aforementioned vulnerability-
attack-defense framework and insights can be adopted or adapted to accommodate other
blockchain systems. We discuss Ethereum’s planned PoS upgrade toward Ethereum 2.0 (called
Casper) and its plan on coping with attacks against PoS protocols. To get a glance at the vul-
nerability perspective of popular blockchain systems, we apply our taxonomy of Ethereum vul-
nerabilities to Hyperledger and EOS blockchains and find that blockchains using different pro-
gramming languages and architectures have very different vulnerabilities. We discuss three im-
portant future research directions in securing Ethereum systems, including: (i) eliminating known
Ethereum vulnerabilities; (ii) developing Ethereum test tools and environments; (iii) formalizing,
analyzing and quantifying Ethereum security. Under each direction, we list a set of open problems
and suggest possible technical approaches to tackling them. The preceding discussion justifies
how the present article can serve the needs of students and researchers. For practitioners, we
systematize the best practices into a small number of principles that may be easier to adopt in
practice.

1.2 Related Work

Table 1 highlights the relationship between the present work and related prior surveys, which
accommodate some of vulnerabilities, attacks, defenses, and building-blocks. The most closely
related survey is Atzei et al. [65], which discussed 12 types of vulnerabilities, 9 attacks, and

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

67:4 H. Chen et al.

Table 1. Comparison between Surveys Related to Blockchain Security

Study
Vulnerabilities Attacks Defenses Building-blocks

Bitcoin Ethereum Insights Bitcoin Ethereum Insights Bitcoin Ethereum Insights Cryptography Consensus
[65] 12 9 3

This work 40 � 29 � 51 �
[21] 20 6 5
[200] 11 11 30

[164] 22 � 33 �
[112] 10 �
[94] 27 �
[196] �

[67, 78, 179, 186] �

3 defenses in the context of Ethereum smart contracts. In contrast, we present a much more
systematic treatment by accommodating 40 types of vulnerabilities, 29 attacks, and 51 defenses.
From a methodological standpoint, we further discuss the root causes of vulnerabilities (e.g., the
root cause of the unchecked call return value vulnerability is the inconsistent exception handling of
Solidity). Moreover, we draw insights from the perspectives of vulnerability, attack, and defense.

There are a number of surveys on blockchain security from different perspectives than ours.
First, Li et al. [21] reviewed blockchain security through 20 types of vulnerabilities, 6 attacks, and
5 defenses, without making distinction between Bitcoin and Ethereum. Similarly, Zhu et al. [200]
reviewed 11 smart contract vulnerabilities, 11 attacks against blockchain data, and 30 defenses. On
the contrary, we focus on Ethereum blockchain by accommodating 40 types of vulnerabilities, 29
attacks, and 51 defenses. Second, Saad et al. [164] explored blockchains’ attack surface in terms
of cryptographic constructions, distributed system architecture, and applications; they cover 22
attacks and 33 defenses, but not vulnerabilities. Their survey is orthogonal to ours, because (i) we
focus on Ethereum, rather than multiple implementations of blockchains, (ii) we discuss vulnera-
bilities and their root causes as well as the attacks exploiting them, rather than attack surface, and
(iii) we provide insights into, and contrast, the vulnerabilities at different layers of the Ethereum ar-
chitecture. Third, Harz et al. [112] discussed 10 smart contract verification tools. Similarly, Angelo
et al. [94] discussed 27 tools for analyzing Ethereum smart contracts. On the contrary, we focus
on Ethereum defenses, rather than purely on smart contracts. Fourth, Zhang et al. [196] presented
a comprehensive review on Bitcoin-like transactions and the underlying (cryptographic) mecha-
nisms. Their review is geared toward the abstract blockchain model for Bitcoin-like transactions;
in contrast, we focus on the Ethereum ecosystem, including the design and implementation of the
blockchain platform and DApps. There are surveys on Bitcoin and cryptocurrencies [74, 85, 177],
which use a transaction-centered model known as unspent transaction outputs (UTXO). In con-
trast, we focus on Ethereum, which uses an account-centered model. Fifth, there are surveys on
blockchain consensus protocols [67, 78, 179, 186] and blockchain-based applications in IoT security
[122]. In contrast, we focus on the Ethereum system.

1.3 Paper Outline

Section 2 briefly reviews the Ethereum system and discusses the survey methodology. Section 3
presents 40 Ethereum vulnerabilities and analyzes their root causes. Section 4 presents 29 attacks
against Ethereum and analyzes their consequences. Section 5 presents 51 defenses and analyzes
their capabilities and investments. Section 6 discusses ongoing Ethereum development and
comparison with other blockchains. Section 7 discusses future research directions. Section 8
concludes the article. The Appendix presents vulnerabilities in, and attacks against, the Ethereum
environment.

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:5

Fig. 1. Architecture of the Ethereum blockchain and its environment in which the Ethereum blockchain runs.

The environment serves the four layers of the Ethereum architecture via a web user interface to interact with

applications, databases for storing blockchain data, cryptographic mechanisms for supporting the consensus

protocols, and Internet service for the network layer.

2 ETHEREUM REVIEW AND SURVEY METHODOLOGY

2.1 A Brief Review of the Ethereum System

Figure 1 highlights a four-layer architecture of Ethereum. At the application layer, Ethereum clients
execute smart contracts in EVM, where smart contracts are associated to Ethereum accounts. The
data layer contains the blockchain data structures. The consensus layer assures a consistent state
of the blockchain. Note that Ethereum plans to replace its current use of Proof-of-Work (PoW)
with Proof-of-Stake (PoS). The network layer manages an Ethereum peer-to-peer (P2P) network
of nodes or clients such that a node can always get the updated state of the blockchain from some
active nodes.

2.1.1 The Application Layer. Ethereum supports two types of accounts: externally owned ac-
counts (EOA) and contract accounts. An EOA is used to keep a user’s funds in Wei, which is the
smallest subdenomination of Ether and is worth 10−18 Ether. An EOA is associated with, and ad-
dressed by, a public key; access to an EOA is authenticated by showing the ownership of the
corresponding private key. In contrast, a contract account is associated with a piece of executable
bytecode (i.e., smart contracts), which defines some business logic of interest. An EOA or contract
account has a dynamic state, which is defined by: (i)nonce , which tracks the number of transactions
that have been initiated by the owner of the EOA or the number of contracts created by the contract
account; (ii) balance , which is the amount of Wei (i.e., 10−18 Ether) owned by the EOA or contract
account; (iii) storaдeRoot , which is the hash of the root of the account’s storage data structure trie
that records a contract’s state variables associated to the corresponding piece of bytecode (i.e., not
applicable to EOA); (iv) codeHash, which is the hash value of a contract account’s bytecode (i.e.,
not applicable to EOA). The state of a blockchain is defined by the states of the accounts on the
blockchain.

Smart contracts are DApp building-blocks. A DApp often has a user interface as its front-end
and some smart contracts as its back-end. At the moment of writing, 3,410 DApps are running on
top of Ethereum, including finance, governance, gambling, exchange, and wallet applications [59].
Some DApps issue their own cryptocurrency, called tokens, for purposes like Initial Coin Offering
(ICO) and exchanges. An Ethereum-based token is a special kind of smart contract (e.g., ERC-20
[2]). Smart contracts execute in EVMs, which are quasi-Turing-complete machines using a stack-
based architecture; the term “quasi” means the execution is limited by the amounts of gas offered
by transactions.

2.1.2 The Data Layer. A transaction is an interaction between an EOA (called sender) and an-
ther EOA or contract account (called recipient). A transaction is specified by: (i) nonce , which is

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

67:6 H. Chen et al.

Fig. 2. An ontology of Ethereum systems security through the lens of vulnerabilities, attacks and defenses.

In this ontology, the Ethereum system is abstracted by a four-layer architecture (i.e., application, data, con-

sensus and network layers), has vulnerabilities, is attacked by attacks, and is defended by defenses; attacks

exploit vulnerabilities, defenses address vulnerabilities, and attacks and defenses interact with each other via

vulnerabilities.

a counter for tracking the total number of transactions that have been initiated by the sender;
(ii) recipient , which specifies a transaction’s destination EOA or contract account; (iii) value ,
which is the amount of money (unit: Wei) to be transferred from the sender to the recipient (if
applicable); (iv) input , which is the bytecode or data corresponding to the purpose of the trans-
action; (v) дasPrice and дasLimit , which, respectively, specify the unit price and the maximum
amount of gas the sender is willing to pay the winning miner of a block containing the transac-
tion; (vi) (v, r , s), which is the Elliptic Curve Digital Signature Algorithm (ECDSA) signature of the
sender. Execution of a transaction updates the states of the accounts involved and therefore the
blockchain. Owing to space limit, the lifecycle of an Ethereum transaction is depicted in Figure 1
of the Appendix.

Trie [184] is the data structure for storing Ethereum blockchain data (e.g., account states). Like a
Patricia tree, a trie stores (key,value) pairs and facilitates search as follows: The path from the root
to a leaf node corresponds to a key and the leaf node contains avalue (e.g., the state of an account).
A block header may point to a state trie, a transaction trie (for bookkeeping transaction data), and
a receipt trie (for bookkeeping the data related to the execution of transactions). Each contract
account corresponding to a leaf or branch node on the state trie uses a separate storage trie to
bookkeep the persistent data of the contract; this storage trie also uses a (key,value) structure,
where the position of each slot corresponds to a key and the contract’s state variable in each
slot corresponds to a value . Ethereum has a single state trie, because the state of the blockchain
dynamically evolves.

2.1.3 The Consensus Layer. At the moment of writing, Ethereum takes about 14 seconds to
create a block, meaning that multiple miners could create valid blocks simultaneously and that
there could be many stale blocks. Ethereum uses a variant of the GHOST consensus protocol [170]
to select the “heaviest” branch as the main chain where the “heaviest” branch is the sub-tree rooted
at the fork in question and has the highest cumulative block difficulty [179], while noting that stale
blocks are not on the main chain. Ethereum rewards not only the regular blocks on the main chain
but also the stale blocks referred by a regular block. As illustrated in Figure 2 of the Appendix, the
miner of a regular block receives one unit of “static block reward,” which is worthy of 2 Ethers
at the time of writing. To incentivize referencing to uncle blocks, the miner of a nephew regular
block further receives 1/32 of the static block reward for a reference (and for up to 2 references).
The miner of the referenced uncle block is rewarded with 1 − d/8 of the static block reward, where
1 ≤ d ≤ 6 is the distance between the uncle block and the referencing nephew block.

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:7

2.1.4 The Network Layer. The Ethereum network is a structured P2P network where each node
(i.e., client) stores a copy of the entire blockchain. For node discovery and routing purposes, each
node maintains a dynamic routing table of 160 buckets and each bucket contains up to 16 entries
of other nodes’ IDs, IP addresses, UDP/TCP ports. Ethereum uses the RLPx protocol [125, 142]
to discover target clients and uses the Ethereum Wire Protocol [50] to facilitate the exchange of
Ethereum blockchain information (e.g., transactions, blocks) between clients.

2.1.5 The Environment. The Ethereum blockchain runs in an environment that operates across
the four layers as follows: a web interface for users to interact with the Ethereum blockchain; a
database for Ethereum clients to store the blockchain data; cryptographic mechanisms for security
purposes; and the Internet infrastructure to support blockchain communications among Ethereum
nodes. We separate the Ethereum blockchain architecture from the environment, because attacks
against the Ethereum blockchain may come from the environment and these attacks may be better
addressed in the environment rather than by the Ethereum blockchain.

2.2 Survey Methodology

2.2.1 Scope. Since we focus on Ethereum security, we systematize Ethereum vulnerabilities,
attacks and defenses. Since these aspects are related to the programming language for writing
smart contracts and the client software, we focus on the widely used Solidity and Geth [58] as well
as Parity [57], respectively. The literature covered includes (i) papers published in major academic
conferences and journals and (ii) preprints, whitepapers, forums, and Ethereum documentations.

2.2.2 Methodology. Our methodology is characterized as follows: Use our domain knowledge
to identify and select literature and materials; and use a novel ontology to guide us in system-
atizing the selected literature and materials. First, we use our domain knowledge to identify and
select literature and materials as follows. For academic literature, we use our domain knowledge
to collect literature from major conferences (including ACM CCS, IEEE SP, NDSS, Usenix Secu-
rity, Eurocrypt, Crypto, ACSAC, DSN, Financial Crypto, ICSE, FSE, and ASE), journals (including
ACM CSUR, IEEE COMST, IEEE TDSC, IEEE T-IFS, IEEE Access) and preprints (arxiv.org); then,
we recursively trace the relevant literature cited by the papers we have collected. Since academic
literature does not contain all of the relevant materials (e.g., newly disclosed security incidents and
techniques that have not been investigated by the academic community), we use Google to find
Internet reports and blogs and then use our domain knowledge to select the relevant materials.
Since Ethereum is evolving, we also consider Ethereum whitepapers and documents describing
ongoing developments (e.g., Casper).

Second, we use a novel ontology to systematize the selected literature and materials. As high-
lighted in Figure 2, our ontology abstracts the Ethereum system as the four-layer architecture
mentioned above and accommodates three key aspects of Ethereum security in vulnerabilities,
attacks, and defenses. Under this ontology, vulnerabilities are categorized based on the layers at
which they reside, attacks are categorized based on the layers at which they target, and defenses
are categorized based on their defense mechanisms (e.g., proactive vs. reactive). More importantly,
we aim to draw insights into: (i) What are the root causes and status of Ethereum vulnerabilities
(i.e., eliminated or not)? (ii) What are the attack tactics (i.e., how the vulnerabilities are exploited
to wage attacks) and their consequences? (iii) What are the defensive efforts that have been made
and how effective are they? (iv) What are the relationships between vulnerabilities, attacks and
defenses (i.e., which attacks exploit which vulnerabilities and which defenses address which vul-
nerabilities and defeat which attacks)?

It is worth mentioning that the taxonomy of vulnerabilities, attacks and defenses resulting from
our methodology can be extended to accommodate new vulnerabilities, attacks and defenses that

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

67:8 H. Chen et al.

Fig. 3. A classification of Ethereum vulnerabilities and their state-of-the-art treatments, where a filled box

� means the vulnerability has been eliminated already, an empty box � means the vulnerability is open (i.e.,

has yet to be eliminated), and a half-empty half-filled box means the vulnerability can be avoided by best

practice).

may have been discovered at the time of reading. If these new vulnerabilities, attacks, and defenses
are not fundamentally different from the ones systematized in the present article, then they can
be merged with their similar counterparts in present taxonomy; otherwise, they can be accommo-
dated by extending the present taxonomy (i.e., vulnerabilities and attacks can be accommodated
according to the layer or layers they are associated with, and defenses can be accommodated ac-
cording to their category, such as proactive or reactive, and/or their capabilities).

To improve readability, we denote the vulnerabilities by V1, . . . ,V40, respectively. Similarly,
we respectively denote the attacks by A1, . . . ,A29 and the defenses by D1, . . . ,D51. We use
“Ai (Vj , · · ·)” to denote that attack Ai exploits vulnerabilityVj and possibly others.

3 VULNERABILITIES

Figure 3 highlights our classification of Ethereum vulnerabilities based on their location, cause,
and status (i.e., eliminated vs. can be avoided by best practice vs. open). For ease of reference, we
denote the 40 types of vulnerabilities asV1, . . . ,V40, respectively. In what follows, we group them
according to location.

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:9

3.1 Vulnerabilities at the Application Layer

3.1.1 Reentrancy (V1). This vulnerability was first observed from the DAO attack [5]; its vari-
ants were later reported in Reference [162]. The vulnerability occurs when an external callee con-
tract calls back to a function in the caller contract before the caller contract finishes (i.e., cyclic calls
in a sense). This allows the attacker to bypass the due validity check until the caller contract is
drained of Ether or the transaction runs out of gas. The vulnerability is caused by: (i) a contract’s
control-flow decision relies on some of its state variable(s) that should be, but are not, updated by
the contract itself before calling another contract [162]; and (ii) there is no gas limit when handing
the control-flow to another contract. The vulnerability can be prevented by one of the following
methods [49]: (i) assuring that a contract’s state variables are updated before calling another con-
tract; (ii) introducing a mutex lock on the contract state to assure that only the lock owner can
change the state; (iii) using the transfer method to send money to other contracts, because this
method only forwards 2,300 gas to the callee contract.

3.1.2 Delegatecall Injection (V2). This vulnerability was first observed from an attack against
the Parity wallet [16]. To facilitate code-reuse, EVM provides an opcode, delegatecall, for insert-
ing a callee contract’s bytecode into the bytecode of the caller contract [130]. As a consequence,
a malicious callee contract can directly modify (or manipulate) the state variables of the caller
contract. This vulnerability is caused by the fact that a callee contract can update the caller con-
tract’s state variables. The vulnerability can be completely prevented by declaring a contract that
is meant to be shared via the delegatecall as a library, which is stateless [30].

3.1.3 Frozen Ether (V3). This vulnerability was first observed from another attack against the
Parity wallet [13]. The vulnerability results from the ability of users to deposit their money to
their contract accounts with the inability to spend their money from those accounts, effectively
freezing their money. The vulnerability is caused by Reference [119]: (i) contracts not providing
any function for spending money, relying on the money-spending function of another contract
(as a library) and (ii) the callee contract (i.e., the library) being killed accidentally or deliberately.
The vulnerability can be prevented by assuring that mission-critical functions, or money-spending
functions in this case, are not outsourced to another contract.

3.1.4 Upgradable Contract (V4). This vulnerability was first discussed in Reference [65]. The
idea of contract upgrading was introduced to mitigate the problem that smart contracts, once de-
ployed, cannot be modified even if they are later found to have vulnerabilities. To allow contract
upgrading, there are two approaches: (i) splitting a contract into a proxy contract and a logic con-
tract such that developers can upgrade the latter but not the former; and (ii) using a registry contract
to bookkeep the updated contracts. While effective, these approaches introduce a new vulnerabil-
ity: When the contract developer becomes malicious, the updated contract can be malicious. This
vulnerability (i.e., insecure contact updating) remains to be an open problem.

3.1.5 DoS with Unexpected Revert (V5). This vulnerability was first reported in Reference [49].
It occurs either when a transaction is reverted due to a caller contract encountering a failure in
an external call, or the callee contract deliberately performs the revert operation to disrupt the
execution of the caller contract. This vulnerability is caused by the execution of a caller contract
being reverted by a callee contract. This vulnerability can be prevented by letting a recipient invoke
a transaction to “pull” the money that was set aside by a sender for the recipient, which effectively
prevents a sender’s transaction from being reverted [38].

3.1.6 Integer Overflow and Underflow (V6). This vulnerability was first observed from the at-
tack against the BEC tokens [32]. It occurs when the result of an arithmetic operation falls outside

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

67:10 H. Chen et al.

of the range of a Solidity data type, causing (for example) unauthorized manipulation to the at-
tacker’s balance [32] or other state variables. The vulnerability is caused by Solidity source code
not performing proper validation on numeric inputs, and that neither the Solidity compiler nor
the EVM provides integer overflow/underflow detection. This vulnerability can be prevented by
using the SafeMath library [37] that handles these issues.

3.1.7 Manipulated Balance (V7). This vulnerability was first reported in Reference [34] and was
also known as the “forcing Ether to contracts” vulnerability. This vulnerability occurs when a con-
tract’s control-flow decision relies on the value of this.balance or address(this).balance,
which can be leveraged by an attacker to make itself the only one who can obtain the money;
see Reference [30] for a detailed description. This vulnerability can be prevented by not using a
contract’s balance in any conditional statement [34].

3.1.8 Authentication Through tx.origin (V8). This vulnerability was first discussed in Refer-
ence [12]. The tx.origin is a global variable in Solidity and refers to the original EOA that initiates
the transaction in question. This vulnerability occurs when a contract uses tx.origin for autho-
rization, which can be compromised by a phishing attack. This vulnerability can be prevented
by using msg.sender, instead of tx.origin, for authentication, because msg.sender returns the
account that incurred the message.

3.1.9 Erroneous Visibility (V9). This vulnerability was first observed in an attack against the
Parity wallet [16]. It occurs when a function’s visibility is incorrectly specified and thus permits
unauthorized access. Specifically, Solidity provides four types of visibility to restrict access to a
contract’s functions, namely, public, external, internal, and private, which respectively says
a function can be called arbitrarily, only externally, only internally (i.e., within the contract and
its derived contracts), or only within the contract. Functions that should not be called from an
external contract should be specified as private or internal. However, Solidity makes functions
as public by default, allowing attackers to call improperly specified functions. Solidity (starting
version 0.5.0) mitigates the vulnerability by making it mandatory for programmers to explicitly
specify function visibility [39]. Still, this vulnerability cannot be prevented unless programmers
correctly specify functions’ visibilities.

3.1.10 Unprotected Suicide (V10). This vulnerability was first observed from an attack against
the Parity wallet [13]. A contract can be killed by the contract’s owner (or a trusted third-party)
using the suicide or self-destruct method. When a contract is killed, its associated bytecode and
storage are deleted. The vulnerability is caused by inadequate authentication enforced by a con-
tract. The vulnerability can be mitigated by enforcing, e.g., multi-factor authentication, meaning
a suicide operation must be approved by multiple parties [54].

3.1.11 Leaking Ether to Arbitrary Address (V11). This vulnerability was first reported in Refer-
ence [152]. The vulnerability occurs when a contract’s funds can be withdrawn by any caller, who
is neither the owner of the contract nor an investor who deposited funds to the contract. This vul-
nerability is caused by the failure to check a caller’s identity when the caller invokes a function to
send Ether to an arbitrary address. This vulnerability can be prevented by enforcing an adequate
authentication on the functions for sending funds.

3.1.12 Confidentiality Failure (V12). This vulnerability was first observed from a multi-player
game in Reference [92] and was also called keeping secrets in Reference [65]. It can be exploited
to benefit an attacker. In blockchain, restricting the visibility of a variable or function does not
assure that the variable or function is confidential because of the public nature of blockchain (i.e.,
details of transactions are publicly known). Although restricting a state variable to be private can

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:11

prevent other contracts from accessing it, anyone can figure out the value of a state variable from
the relevant transaction data. This vulnerability is caused by the lack of confidentiality assurance
for sensitive data (e.g., transaction information) in untrusted environment. A possible solution
to preventing this vulnerability is to use cryptographic techniques, such as timed commitments
[65, 92].

3.1.13 Insufficient Signature Information (V13). The vulnerability occurs when a digital signa-
ture is valid for multiple transactions, which can happen when one sender (say Alice) sends money
to multiple recipients through a proxy contract (instead of initiating multiple transactions). In the
proxy contract mechanism, Alice can send a digitally signed message off-chain (e.g., via email)
to the recipients, similar to writing personal checks in the real world, to let the recipients with-
draw money from the proxy contract via transactions. To assure that Alice does approve a certain
payment, the proxy contract verifies the validity of the digital signature in question. However,
if the signature does not give the due information (e.g., nonce, proxy contract address), then a
malicious recipient can replay the message multiple times to withdraw extra payments. This vul-
nerability was first exploited in a replay attack against smart contracts [36]. This vulnerability can
be prevented by incorporating the due information in each message, such as a nonce value and
timestamps [62].

3.1.14 DoS with Unbounded Operations (V14). This vulnerability was first observed from the
GovernMental contract [15] and its variants were later discussed in Reference [104]. Recall that
each block has a “gas limit” field that specifies the maximum total amount of gas that can be con-
sumed by the transactions in a block. This vulnerability occurs when the amount of gas required
for executing a contract exceeds the block gas limit. It is caused by improper programming with
unbounded operations in a contract (e.g., loop over a large array). This vulnerability can be mit-
igated by assuring that (i) contracts never use loops over data structures, especially those data
structures that can be operated by EOA; and (ii) when a contract has to use loops over data struc-
tures, it should keep track of the loop and resume the aborted execution when the sender of the
transaction re-invokes the same contract (to finish the execution of the contract).

3.1.15 Unchecked Call Return Value (V15). This vulnerability [139] is also known as mishandled
exceptions. It has two variants, called gasless send and unchecked send [65, 121]. Recall that Solidity
provides two methods for a contract to call another: (i) directly referencing to a callee contract’s in-
stance; (ii) using one of the following four low-level methods: send, call, delegatecall and callcode.
There is a discrepancy in Solidity’s handling of exceptions occurring in the execution of callee
contracts [139]: if an exception occurs in case (i), then the exception is automatically propagated
back to the caller and the transaction is reverted entirely; if an exception occurs in case (ii), then
the callee contract returns false back to the caller contract. This discrepancy can lead to unin-
tended transactions unless the caller contract carefully addresses the discrepancy. At the moment
of writing, neither the Solidity compiler nor the EVM addresses the discrepancy. This vulnerability
can be prevented by letting a caller contract check and address the discrepancy mentioned above.

3.1.16 Uninitialized Storage Pointer (V16). This vulnerability was first reported in Reference
[41]. Recall that in Solidity, the contract state variables are always laid out consecutively in stor-
age, starting from slot 0. For a compound local variable (e.g., struct, array, or mapping), a reference
is assigned to an unoccupied slot in the storage to point to the state variable. If the local variable
is not explicitly initialized, then the local variable’s reference points to slot 0 by default, causing
the content starting from slot 0 to be overwritten. This vulnerability is caused by Solidity’s treat-
ment of uninitialized compound local variables. This vulnerability has been eliminated by Solidity

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

67:12 H. Chen et al.

Fig. 4. The type casts vulnerability.

compiler, starting version 0.5.0, by reporting an error to contracts that contain uninitialized storage
pointers [39].

3.1.17 Erroneous Constructor Name (V17). This vulnerability was first observed from the
Rubixi contract [56], where the constructor function has an incorrect name that allows anyone
to become the owner of the contract. Prior to Solidity version 0.4.22, a function declared with
the same name as the contract’s is considered as the contract constructor, which is executed only
when creating the contract. If the constructor’s name is misspelled by a programmer for whatever
reason, then the intended constructor becomes a public, normal function that can be invoked by
any EOA. This vulnerability is caused by Solidity not providing a special syntax to distinguish a
constructor function from a regular function. The vulnerability has been eliminated in Solidity
version 0.4.22 by introducing the new keyword constructor [40].

3.1.18 Type Casts (V18). This vulnerability was first reported in Reference [65]. Recall that a
contract written in the Solidity language can call another contract by directly referencing the
callee contract’s instance. As illustrated in Figure 4, contract Game calls function add() in contract
CounterLibrary by referencing its instance c (Line 5). When function play() (Line 4) is invoked,
the argument specifying the callee contract’s address is cast to CounterLibrary. However, the So-
lidity compiler only checks whether or not CounterLibrary declared function add(), but cannot
check whether or not the address argument conforms to that of CounterLibrary’s. If the address
associated to CounterLib (Line 2) contains a function that is named add() and has the same dec-
laration, then the add() function in CounterLib is executed, instead of the desired add() function
in CounterLibrary. As a consequence, the EVM can be misled to run the attacker’s contract. This
vulnerability is caused by the incompetent type system of Solidity. Currently, there is no feasible
way to avoid the vulnerability.

3.1.19 Outdated Compiler Version (V19). This vulnerability was first reported in Reference [54].
It occurs when a contract uses an outdated compiler, which contains bugs and thus makes a com-
piled contract vulnerable. This vulnerability can be prevented by using an up-to-date compiler.

3.1.20 Short Address (V20). This vulnerability was first discussed in Reference [17]. Recall that
in a contract-invocation transaction, the function selector and arguments are encoded in the in-
put field as follows: the first four bytes specify the callee function and the remaining data arranges
arguments in chunks of 32 bytes. However, if the length of the encoded arguments is shorter than
expected, then EVM will auto-pad extra zeros to the arguments to make up for 32 bytes. Consider
function transfer(address addr, uint tokens) as an example. If the trailing (i.e., last) byte of addr is
left off, then two extra hex zeros will be added to the end of tokens, which amplifies the number
of tokens being sent. This vulnerability is caused by EVM not checking the validity of addresses.
This vulnerability can be prevented by checking the length of a transaction’s input (i.e., msg.data)
[14].

3.1.21 Ether Lost to Orphan Address (V21). This vulnerability was first reported in Reference
[65]. When transferring money, Ethereum only checks that the length of the recipient’s address
is no greater than 160-bit but not the validity of the recipient’s address. If money is sent to a
non-existing orphan address, then Ethereum automatically registers for the address rather than
terminating the transaction. Since the address is not associated to any EOA or contract account, no

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:13

one can withdraw the transferred money, which is effectively lost. This vulnerability is caused by
EVM not being orphan-proof. At the moment of writing, this vulnerability can only be prevented
by manually assuring the correctness of the recipient’s address.

3.1.22 Call-stack Depth Limit (V22). This vulnerability was first reported in Reference [3]. Re-
call that in the original specification of the Ethereum execution model [184], EVM’s call-stack has
a hard limit of 1,024 frames. When a contract calls another contract, the call-stack depth of the
transaction increases by one; when the number of nested calls exceeds 1,024, Solidity throws an
exception and aborts the call. An attacker can recursively call a contract, which may be deployed
by the attacker, 1,023 times and then call a victim contract to reach the stack depth limit, which
causes any subsequent external call made by the victim contract to fail. Since Solidity does not
propagate exceptions in low-level external calls, the victim contract may not be aware of the fail-
ure. This vulnerability is caused by EVM’s inadequate execution model, and has been eliminated
by the hard fork for EIP-150, which re-defines the gas-consumption rules of external calls to make
it impossible to reach 1,024 in call stack depth [6].

3.1.23 Under-priced Opcodes (V23). This vulnerability was first observed from two DoS attacks
[11, 20, 82]. Recall that Ethereum uses the gas mechanism to prevent the abuse of computing
resources (e.g., CPU, disk, network). This vulnerability occurs when a contract contains many
under-priced opcodes that consume a large amount of resources at a low gas cost, meaning that
the execution of the contract wastes a lot of computing resources. This vulnerability is caused by
the failure in properly setting the gas cost for consuming computing resources. To mitigate this
vulnerability, Ethereum has raised the gas cost for the opcodes that were abused to launch the two
DoS attacks described in Reference [6]. However, it is not clear whether the vulnerability can be
completely prevented by this mechanism or not [82].

3.1.24 Transaction Ordering Dependence (a.k.a. Front Running;V24). This vulnerability was first
discussed in Reference [139]. It refers to the concurrency issue that the forthcoming state of
blockchain depends on the execution order of transactions, which is, however, determined by the
miners. Typically, miners group and order transactions into a new block based on the reward of-
fered by the transactions. Since transactions are publicly broadcast to the network, a malicious
EOA can offer a higher gasPrice to have its transactions assembled into blocks sooner than the
others’. Moreover, a malicious miner can always pick up its own transactions regardless of the
gasPrice. This vulnerability is caused by that the state of a contract depending on how miners
select transactions to assemble into blocks. This vulnerability can be mitigated by using a crypto-
graphic commit-reveal scheme to hide the information (e.g., gasPrice, value) offered by transactions
[9, 22], or by introducing a guard condition to assure that an invocation of a contract either returns
the expected output or fails [139].

3.1.25 Timestamp Dependence (V25). This vulnerability [139] occurs when a contract uses the
block.timestamp as part of the triggering condition when executing a critical operation (e.g.,
money transfer) or as the source of randomness, which can be manipulated by a malicious miner.
The vulnerability is caused by Ethereum only requiring that a timestamp be greater than the
timestamp of its parent block and be within 900 seconds of the current clock. If a contract uses
a timestamp-based condition (e.g., block.timestamp %25 == 0) to determine whether or not to
transfer money, then a malicious miner can slightly shift the timestamp to satisfy the condition to
benefit the attacker. This vulnerability can be prevented by not using block.timestamp.

3.1.26 Generating Randomness (V26). This vulnerability was first reported in Reference [35].
Many gambling and lottery contracts select winners randomly, for which a common practice

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

67:14 H. Chen et al.

is to generate a pseudorandom number based on some initial private seed (e.g., block.number,
block.timestamp, block.difficulty or blockhash). However, these seeds are fully controlled
by miners, meaning that a malicious miner can manipulate these variables to make itself the win-
ner. This vulnerability is caused by manipulable entropy sources. There are several proposals for
addressing this problem, and each proposal has its own pros and cons. The Oracle RNG proposal
[52] uses existing external services to generate random numbers off-chain and then send back to
the requesting contract, meaning that there is a single-point-of-failure in the Oracle RNG. The
RANDAO proposal [53] initially uses a distributed cryptographic commitment scheme for multiple
participants to jointly generate a random number, which may be subject to the last-revealer attack
where the last participant can create a bias by choosing whether or not to reveal its committed
entropy [96]. To resolve this issue, Verifiable Delay Functions (VDFs) [72] are introduced to assure
that no participant can compute the random seed before submitting its own entropy. However,
existing VDFs are not post-quantum secure [73, 181] and have limited throughput.

3.2 Vulnerabilities at the Data Layer

3.2.1 Indistinguishable Chains (V27). This vulnerability was first observed from the cross-chain
replay attack when Ethereum was divided into two chains, namely, ETH and ETC [10]. Recall that
Ethereum uses ECDSA to sign transactions. Prior to the hard fork for EIP-155 [7], each transaction
consisted of six fields (i.e., nonce, recipient, value, input, gasPrice, and gasLimit). However, the digital
signatures were not chain-specific, because no chain-specific information was even known back
then. As a consequence, a transaction created for one chain can be reused for another chain. This
vulnerability has been eliminated by incorporating chainID into the fields.

3.2.2 Empty Account in the State Trie (V28). This vulnerability was first observed from a DoS
attack reported in References [20, 82]. An empty account is an account that has zero nonce, zero
balance, and no code or storage associated to it. An empty account is functionally equivalent to a
non-existing account, except that an empty account needs to be bookkept in the Ethereum state
trie and thus increases the synchronization and transaction processing time. This means that an
attacker can incur a large number of empty accounts to substantially increase the the synchroniza-
tion and transaction processing time, effectively causing a DoS attack [20, 82]. An empty account
can be incurred by an attacker using the suicide opcode to transfer zero Ethers to a non-existing
account. This vulnerability was caused by the lack of control over empty accounts in the state
trie. This vulnerability has been eliminated by the hard fork for EIP-161 [8], which removed those
empty accounts from the state trie and prevents any empty account from being stored in the state
trie.

3.3 Vulnerabilities at the Consensus Layer

3.3.1 Outsourceable Puzzle (V29). This vulnerability was reported in Reference [179]. Recall
that Ethereum adopts the PoW puzzle called Ethash, which was meant to be ASIC-resistant and
be able to limit the use of parallel computing (owing to the fact that the vast majority of a miner’s
effort will be reading a dataset via the limited memory bandwidth). However, a crafty miner can
still divide the task of searching for a puzzle solution into multiple smaller tasks and then outsource
them. This vulnerability is caused by Ethash only making the puzzle solution partially sequential
in preimage search, rather than relying on sequential PoW. Several puzzles are proposed to cope
with this problem [88, 146]. However, they have not been adopted by the Ethereum community.

3.3.2 Probabilistic Finality (V30). This vulnerability is inherent to PoW and PoS protocols [66,
91]. The vulnerability refers to the fact that Ethereum blockchain can only achieve a probabilis-
tic rather than a deterministic assurance that a newly generated block will be finalized in the

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:15

blockchain. The deeper a block sinks into the chain, the more likely it will not be reverted. This
vulnerability is caused by the design that Ethereum blockchain favors availability over consis-
tency, which is choice made under the CAP theorem [100]. To mitigate this vulnerability, it is
recommended to consider a new block persistent in the main chain after seeing 12 blocks. Still, the
probability of finality is affected by many factors (e.g., communication delays) [103]. In principle,
the 50% fault tolerance of Nakamoto consensus implies that a powerful attacker (e.g., controlling
51% hashrate for PoW) can formulate a new main chain at will [133, 164]. To mitigate this vulnera-
bility, Ethereum’s upcoming PoS upgrade, known as Casper, plans to use periodic check-pointing
[77] and a safety oracle [149]. Nevertheless, reaching fast and deterministic finality is still an open
problem.

3.3.3 DoS with Block Stuffing (V31). This vulnerability was first observed from the Fomo3D
contract [23]. The vulnerability entails only the attacker’s transactions being included in the newly
mined blocks while others are abandoned by miners for a period of time. This can happen when
the attacker offers a higher gasPrice to incentivize the miners to select the attacker’s transactions.
This vulnerability is caused by the greedy mining incentive mechanism. At the moment of writing,
there is no solution to prevent this vulnerability.

3.3.4 Honest Mining Assumption (V32). This vulnerability was first reported in Reference [99],
referring to that the assumption inherent to the Nakamoto consensus protocol—honest mining
(i.e., including the most valuable transactions in new blocks) is the most profitable strategy for
each miner—may not be true. This is because it can be more profitable to deviate from the hon-
est mining strategy, such as conducting selfish mining [161], accepting bribes [144], and reaping
ordering optimization fees [89]. This vulnerability is caused by the consensus protocol for not
being incentive-compatible. At the moment of writing, this vulnerability remains to be an open
problem.

3.3.5 Rewards for Uncle Blocks (V33). This vulnerability was reported in References [102, 154,
161]. It refers to the uncle-rewarding mechanism for coping with the increase in stale blocks caused
by fast block generation. However, this mechanism had a side-effect in allowing selfish miners to
make their stale blocks become uncle blocks and receive rewards, effectively incentivizing self-
ish mining and double-spending. At the moment of writing, it is not clear how to eliminate this
vulnerability.

3.3.6 Verifier’s Dilemma (V34). This vulnerability was first reported in Reference [140], refer-
ring to when the verification of a new transaction requires nontrivial computation effort, miners
are subject to attacks regardless of whether they choose to verify the transaction or not. If miners
verify a computationally heavy transaction, then they will spend a significant amount of time and
give attackers an advantage in the race for the next block; if miners accept the transaction without
verification, then the blockchain may include an incorrect transaction. This vulnerability is caused
by the high cost in verifying resource-demanding transactions in Ethereum. This vulnerability can
be mitigated by limiting the amount of computation that is required for verifying all transactions
in a block [140]. However, it is not clear how to eliminate this vulnerability.

3.4 Vulnerabilities at the Network Layer

3.4.1 Unlimited Nodes Creation (V35). This vulnerability was reported for the Geth client prior
to its version 1.8 [142]. In the Ethereum network, each node is identified by a unique ID, which is
a 64-byte ECDSA public key. An attacker could create an unlimited number of nodes on a single
machine (i.e., with the same IP address) and use these nodes to monopolize the incoming and
outgoing connections of some victim nodes, effectively isolating the victims from the other peers

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

67:16 H. Chen et al.

in the network. This vulnerability is caused by the weak restriction on the node generation process.
This vulnerability can be eliminated by using a combination of IP address and public key as node
ID. This countermeasure has not been adopted by the Geth developers who argue that it has a
negative impact on the usability of the client.

3.4.2 Uncapped Incoming Connections (V36). This vulnerability was in the Geth client prior
to its version 1.8 [142]. Each node can have a total number of maxpeers (with a default value
25) connections at any point in time, and can initiate up to �(1 + maxpeers)/2� outgoing TCP
connections with the other nodes. However, there was no upper limit on the number of incoming
TCP connections initiated by the other nodes. This gives the attacker an opportunity to eclipse a
victim by establishing maxpeersmany incoming connections to a victim node that has no outgoing
connections. This vulnerability has been eliminated in Geth v1.8 by enforcing an upper limit on
the number of incoming TCP connections to a node, with a default value �maxpeers/3� = 8.

3.4.3 Public Peer Selection (V37). This vulnerability was detected in Geth client prior to its
version 1.8 [142]. Recall that the Ethereum P2P network uses a modified Kademlia DHT for node
discovery and that each node maintains a routing table of 256 buckets for storing information about
the other nodes. The buckets are arranged based on the XOR distance between a node’s ID and
its neighboring node’s ID [126]. When a node, say A, needs to locate a target node, A queries the
16 nodes in its bucket that are relatively close to the target node and asks each of these 16 nodes,
say B, to return the 16 IDs of B’s neighbors that are closer to the target node. The process iterates
until the target node is identified. However, the mapping from node IDs to buckets in the routing
table is public, meaning that the attacker can freely craft node IDs that can land in a victim node’s
buckets and insert malicious node IDs into the victim node’s routing table [142]. This vulnerability
can be limited by making the “node IDs to buckets” mapping private. This countermeasure has not
been adopted by the Geth developers who argue that it has a negative impact on the usability of
the client.

3.4.4 Fixed Peer Selection (V38). This vulnerability was reported for the Geth client prior to its
version 1.9 [115]. The vulnerability refers to the Geth client always fetching the heads of randomly
chosen buckets when selecting nodes from its routing table to establish outbound connections.
Since the nodes in each bucket are sorted by activity, an attacker could make its node always stay
ahead of the other nodes by regularly sending message to the Geth client. This vulnerability has
been eliminated in Geth v1.9 by selecting nodes uniformly at random from the set of all nodes in
the routing table instead of only the heads of each bucket.

3.4.5 Sole Block Synchronization (V39). This vulnerability was first reported in Reference [185].
It allows an attacker to partition the Ethereum P2P network without monopolizing the connections
of a victim client. Recall that each block header contains a difficulty field, which records the mining
difficulty of the block. The total difficulty of the blockchain, denoted by totalDifficulty, is the sum
of the difficulty of the blocks up to the present one. When a client, say A, receives from, say client
B, a block of which the difference totalDifficulty − difficulty is greater than the totalDifficulty at the
blockchain stored on client A (meaning that client A missed a number of blocks), A should start a
block synchronization withB. Ethereum only allows a client to synchronize with one other client at
a time (for network load considerations). This means that if client B is malicious and deliberately
delays the synchronization in response to A’s request, the blockchain at client A is stalled and
A rejects every subsequent block, which may facilitate double-spending and DoS attacks. This
vulnerability can be mitigated by synchronizingA with multiple nodes, which, however, increases
the network load.

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:17

3.4.6 RPC API Exposure (V40). This vulnerability was first observed from the attack against
the Geth and Parity clients [27]. The JSON-RPC of Ethereum clients provide various APIs for
EOAs to communicate with the Ethereum network. For security purposes, the interface should
only be available locally and not be accessible from the internet. However, the standard port 8545
assigned to JSON-RPC can be accessed remotely in the Geth and Parity clients by default, which
makes it possible for an attacker to call these remote clients via a JSON request [180]. Once having
access to the remote client, the attacker can obtain sensitive data and perform certain unauthorized
actions on the remote client. The vulnerability is caused by insecure API design and improper
configuration. The vulnerability can be prevented by configuring the listening port (rather than
using the default one) and adding access control to filter remote RPC calls.

3.5 Further Analysis of Vulnerability Causes

Now, we present a taxonomy of the root causes of the vulnerabilities reviewed above. As high-
lighted in Figure 3, the vulnerabilities are caused by incompetence or flaws in smart contract
programming, solidity language and toolchain, Ethereum design and implementation, and human
factors.

3.5.1 Smart Contract Programming. These causes can be further divided into four sub-causes:
external dependence, meaning a contract’s execution relies on the behavior of an external contract;
improper validation, meaning a failure in checking a condition allows the passing of an invalid
input; inadequate authentication or authorization, causing failures in checking a caller’s identity or
privilege when the caller attempts to access a protected data item or functionality; and uncontrolled
gas consumption, meaning a failure in gas allocation permits a DoS attack. These causes led to 14
types of vulnerabilities. From Figure 3, we draw the following insights. First, 6 (out of the 14) types
of vulnerabilities are caused by inadequate authentication and authorization, leading to:

Insight 1. Authentication and authorization failures in Ethereum smart contracts are a major
problem that calls for standardized stronger identity management solutions and access control mech-
anisms.

Second, 5 (out of the 14) types of vulnerabilities are caused by external dependence (i.e., when
invoking a smart contract, the control-flow is transferred to another contract that may be mali-
cious), leading to:

Insight 2. External dependence makes it hard, if not impossible, to assure the security of Ethereum
smart contracts, highlighting the importance of implementing adequate security auditing on external
calls.

Third, only 4 (i.e.,V6,V9,V13,V14) of the 14 types of vulnerabilities exist in traditional software
and the other 10 are unique to Ethereum smart contract programming. Among these 10, onlyV4

cannot be prevented by best practices and the other 9 types of vulnerabilities are incurred by
programmers’ misunderstanding of Solidity.

Insight 3. Incompetent Ethereum smart contract programming introduces many new kinds of
vulnerabilities, highlighting the importance of standardizing domain-specific best practices for the
new programming paradigm.

3.5.2 Solidity Language and Tool Chain. These causes can be further divided into five sub-
causes: one is buggy compiler (i.e., insufficient tool chain support) and the other four are related to
improper design of the Solidity language, namely, (i) inconsistent exception handling between di-
rect call and low-level calls, (ii) undefined behavior of uninitialized storage pointers, (iii) improper

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

67:18 H. Chen et al.

syntax of constructor function, and (iv) weak type system with flexible typing rules). These five
sub-causes contribute to five types of vulnerabilities. According to Sebesta’s criteria [168], syntax
design, exception handling, and type checking are three important factors affecting a language’s
reliability. Solidity falls short in these aspects and causes vulnerabilities, leading to:

Insight 4. The unreliability of Solidity makes Ethereum smart contracts vulnerability-prone, high-
lighting the importance of reliable programming languages.

3.5.3 Ethereum Design and Implementation. These causes can be further divided into 14 sub-
causes, which are related to, among other things, EVM, blockchain, PoW consensus, incentive
mechanism, and P2P protocol. These causes cut across the application, data, consensus, and net-
work layers. The root causes related to EVM include: (i) missing input check, meaning no check on
the validity of a transaction’s data; (ii) missing orphan proof, meaning no check on a nonexistent
recipient address; (iii) improper execution model, meaning the behavior of EVM is not properly
specified; and (iv) improper gas costs, meaning the gas costs of EVM opcodes are not properly
specified.

The root causes related to blockchain include: (i) flexible block creation, meaning there are no
restrictions on miners when they create blocks, allowing them to create blocks to favor themselves;
(ii) insufficient transaction information, meaning that a transaction can be accepted by multiple
Ethereum blockchains (e.g, ETH, ETC), rather than a specific blockchain, owing to the lack of
information specifying a target blockchain; and (iii) uncontrolled state trie, meaning that there are
no restrictions on the accounts that can be stored in the state trie.

The root causes related to the PoW consensus protocol include: (i) partially sequential PoW,
meaning that Ethereum’s PoW puzzle can still be outsourced to different miners; and (ii) availabil-
ity first, meaning that the Ethereum consensus protocol prefers availability over consistency.

The root causes related to incentive mechanism include: (i) greedy incentive, meaning that a
miner always selects transactions with higher дasPrice; (ii) incompatible incentive, meaning that a
miner can get a higher payment by deviating from the consensus protocol; and (iii) high verification
cost, meaning that a miner may skip the verification of resource-consuming transactions to gain
an advantage in the mining race.

The root causes related to the P2P protocol include: (i) improper node discovery logic, mean-
ing that the Kademlia-based bucket structure and node discovery algorithms are not properly de-
signed; and (ii) improper Ethereum wire protocol, meaning that the blockchain synchronization
algorithm is not properly designed.

The root causes mentioned above contributed 20 types of vulnerabilities, cutting across the
application, data, consensus, and network layers. Among these 20, at least 8 types of vulnerabilities
(i.e.,V22,V23,V27,V31,V33,V35,V36,V39) are incurred by the arbitrary choices of parameters in
Ethereum specification and implementation without thorough analysis, which violates the open
design principle for computer security [166]. This leads to:

Insight 5. Arbitrary choices of parameters in Ethereum specification and implementation caused
many vulnerabilities in Ethereum blockchain systems, highlighting the importance of executing the
“open design” principle.

In addition, 11 (out of the 20) types of vulnerabilities remain to be fixed, suggesting:

Insight 6. Vulnerabilities in Ethereum blockchain are harder to cope with than vulnerabilities in
other systems, hinting that Ethereum blockchain is inherently more complex.

3.5.4 Human Factors. This cause includes improper configuration, meaning that an Ethereum
client is installed with incorrect permissions, which can cause serious security vulnerability.

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:19

Fig. 5. Simplified vulnerable Parity multisignature wallet.

Asking an average user to carefully manage permissions indicates insufficient usability. This leads
to:

Insight 7. There is an inherent trade-off between flexibility in configuring Ethereum clients and
usability, but inadequate usability often leads to vulnerabilities.

4 ATTACKS

Corresponding to the presentation of vulnerabilities, we group the 29 attacks we consider accord-
ing to the locations of the vulnerabilities they exploit. For each attack, we describe its history, cause,
tactic, and direct consequence. For ease of reference, we denote the 29 attacks by A1, . . . ,A29, re-
spectively. Note that some of these 29 attacks may correspond to the same type of attacks (i.e.,
sharing the same name), but they exploit different vulnerabilities or vulnerability combinations
and/or cause different consequences. For example, althoughA2 andA3 belong to the parity mul-
tisignature wallet attack, A2 exploits V2 and V9 to cause unauthorized code execution, while A3

exploitsV3 andV10 to cause DoS.

4.1 Attacks at the Application Layer

4.1.1 The DAO Attack (A1). The contract DAO is a financial application running on top of
Ethereum. In June 2016, it was attacked to cause the loss of US$60M [5]. DAO is an application by
which investors vote on investment proposals for spending their money (i.e., “investment crowd-
sourcing”). Once a proposal is approved by a majority, the money approved by the supporting
investors is moved to the proposer’s account; the money owned by the investors opposing the
proposal is respectively “refunded” to each of them via newly created contract accounts. This
mechanism was implemented in the splitDAO() function; Figure 3 in the Appendix shows how the
attack exploits the reentrancy vulnerability (V1).

4.1.2 Parity Multisignature Wallet Attacks (A2 and A3). In Ethereum, a multisignature wallet
is a smart contract that requires multiple private keys to unlock a wallet. As shown in Figure 5,
a multisignature wallet supported by the Parity client consists of two contracts: (i) a library con-
tract called WalletLibrary, which implements all of the core functions of a wallet; and (ii) an
actual Wallet contract, which holds a reference (i.e., _walletLibrary) that forwards all of the
unmatched function calls to the library contract via delegatecall (Line 7). The Parity multisigna-
ture wallet was compromised twice in 2017. These incidents are reviewed below.

The first attack (A2) exploited the delegatecall injection vulnerability (V2) and the erroneous visi-
bility vulnerability (V9) to drain Ethers approximately worth US$31M [16]. The attacker took over
the ownership of contract Wallet by sending a transaction to the contract with msg.data contain-
ing initWallet() as the callee function (Line 12). Since contract Wallet did not provide a function
named initWallet(), the contract’s fallback function was triggered to delegate the wallet initializa-
tion task to the function initWallet() in WalletLibrary, which replaced the original multi-owner

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

67:20 H. Chen et al.

Fig. 6. The vulnerable function in BECToken.

of contract Wallet with the attacker’s address specified in msg.data. This attack succeeds when
the following four conditions are satisfied simultaneously [16, 18]: (i) the function initWallet() in
the library was not specified as an internal one, meaning it can be externally called via delegatecall;
(ii) the WalletLibrary was actually a stateful contract, meaning it can change the state of Wallet;
(iii) the function initWallet() did not check whether or not the Wallet contract had already been
initialized (if so, no more initialization should be done); (iv) the Wallet’s fallback function did
not check the function being called, but forwarded any unmatched calldata to WalletLibrary,
allowing unintended invocations.

The second attack (A3) exploited the unprotected suicide vulnerability (V10) and the frozen Ether
vulnerability (V3), freezing US$280M in the affected wallets forever [13]. This attack was incurred
by the response to the first attack. The response was to add a modifier, only_uninitialized,
to protect function initWallet() such that a re-initialization of Wallet via delegatecall will throw
an exception and be rejected by the modifier. However, the shared WalletLibrary itself was left
uninitialized, allowing an attacker to bypass the only_uninitialized modifier and set himself
as the owner of the WalletLibrary [93]. Once taking over the library, the attacker invoked the
suicide method to kill the library, causing the Wallet contracts relying on the library unusable.

4.1.3 BECToken Attack (A4). BECToken, an ERC-20 contract, was attacked in April 2018 by an
exploitation of the integer overflow vulnerability (V6), causing a large number of stolen tokens and
a temporary shutdown of token trading at exchange [25]. The vulnerability was in the function
batchTransfer() shown in Figure 6, and the function was meant for users to transfer tokens to
multiple recipients via two arguments: one specifying the array of the recipients’ addresses and
the other specifying the respective number of tokens. The statement at Line 3 calculates the total
number of tokens the sender should pay for a particular transaction, but may have the following
integer overflow: By setting _value to 2255 and _receivers to two accounts controlled by the at-
tacker, the attack overflows the 256-bit variable amount and makes it zero [131]. As a consequence,
the attack bypasses the two checks at Line 4, sending the two receivers extremely large numbers
of tokens.

4.1.4 GovernMental Attacks (A5, A6, A7, and A8). The contract GovernMental was an array-
based pyramid Ponzi scheme, where the last participant wins a jackpot if no one joins the scheme
within 12 hours after the last participant [68]. The contract has four vulnerabilities [65], which
allowed the following four attack tactics and explains why A5, A6, A7, and A8 belong to the
same type of attacks. The first attack, denoted by A5, exploits the DoS with unbounded operations
vulnerability (V14) that when the array bookkeeping the number of participants becomes too large,
the amount of gas required for operating on the array will go beyond the maximum gas that is
permitted for assembling a block. This effectively halts the transaction and the winner cannot
receive the 1,100 ETH jackpot. The second attack, denoted byA6, exploits the unchecked call return
value vulnerability (V15) that the contract does not check the returned value when sending jackpot
to the winner and the call-stack depth limit vulnerability (V22). As a consequence, the owner of the
malicious contract GovernMental can wage the attack to steal a victim participant’s jackpot money
by resetting the contract state variable that records participants’ information. More specifically,
the attack proceeds as follows: (i) the owner of GovernMental deploys another malicious contract,

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:21

Fig. 7. Simplified HYIP contract and attack.

say X ; (ii) the owner invokes X , which further recursively calls X itself for 1,023 times; (iii) X
calls GovernMental, which now executes at the stack depth 1,024; (iv) GovernMental sends the
victim’s jackpot to the victim contract; (v) the victim contract returns False to GovernMental
owing to the excess of call-stack’s depth limit (i.e., 1,024) in the EVM, meaning that the victim
contract cannot receive its jackpot; (vi) GovernMental is supposed to check the returned value
(i.e., False in this case) and then proceed correspondingly (i.e., reverting the transaction in this
case and keeping the contract state variable intact), but the malicious GovernMental ignores the
returned False value and proceeds to reset contract GovernMental’s state for the next round,
causing the victim’s jackpot to belong to the owner of GovernMental. The third attack, denoted
byA7, exploits the transaction-ordering dependence vulnerability (V24) that a malicious miner can
abandon some transactions related to GovernMental or reorder transactions to make itself the
last player (i.e., winner) in each round. The fourth attack, denoted by A8, exploits the timestamp
dependence vulnerability (V25) that a malicious miner can manipulate block.timestamp so that
its own block appears to be the last block to make itself win.

4.1.5 HYIP Attack (A9). The contract HYIP was another Ponzi scheme, which pays existing
investors from funds contributed by new investors at the end of each day. This mechanism is
implemented by the function performPayouts() highlighted in Figure 7, which contains the DoS
with unexpected revert vulnerability (V5) (Line 7) [68]. The attack proceeds as follows: (i) The
attacker, say Alice, writes an exploitation contract, named Mallory, in which the attacker invests
and throws an exception in the fallback function (Line 12). (ii) When function performPayouts()

is called to pay the investors, the fallback function is invoked and throws an exception, causing
a reversion of the money transfer (Line 7) and thus DoS to contract HYIP. (iii) The attacker can
blackmail HYIP to pay a ransom for halting its attack, by undoing the throw operation (Line 13)
via function stopAttack (Line 15), which can only be done by the contract owner, Alice.

4.1.6 Fomo3D Attacks (A10 andA11). The contract Fomo3D was a popular Ponzi game in 2018,
where the last participant who buys a key before the timer runs out won the jackpot. The price of
keys grows with the number of buyers. When a key was sold, the countdown extends for 30 sec-
onds. In addition to the jackpot winner, Fomo3D implemented an airdrop lottery to attract partic-
ipants. For each purchase over 0.1 ETH, the buyer had a chance to be picked up for a tiny profit
from the prize pool. These two incentive mechanisms can be attacked [42].

The first attack (A10) is against the airdrop mechanism. Specifically, the attack exploited
the generating randomness vulnerability (V26). As shown in Figure 8, function airdrop() gener-
ates a random seed by performing a deterministic computation on the current block state (i.e.,
block.timestamp, block.difficulty, etc.) and the address of msg.sender (Lines 2–8). If the
seed satisfies a certain condition (Line 10), then the current key buyer wins an airdrop. However,
since the block information is predictable, an attacker can simply pre-compute the addresses of
new contracts and brute-forces the winning seed (Line 2). The second attack (A11) is against the

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

67:22 H. Chen et al.

Fig. 8. A snippet source code of Fomo3D.

Fig. 9. Cross-contract replay attack via transferProxy().

winning mechanism [42]. Specifically, the attack exploited the DoS with block stuffing vulnerabil-
ity (V31) and caused the attacker to win US$3M [23]. The attack proceeds as follows: When the
timer of the game reaches about three minutes, the attacker buys a key and then sends multiple
transactions to his own accounts with high enough gasPrice. Owing to the choice of miners, these
transactions are first assembled into blocks. Since the maximum amount of gas consumption for a
block is limited, any transactions related to Fomo3D are not assembled into blocks. By congesting
the network until the game is over, the attacker succeeds in becoming the last player.

4.1.7 ERC-20 Signature Replay Attack (A12). This attack [43] exploits the insufficient signature
information vulnerability (V13). When a user transfers ERC-20 tokens, the user must have enough
Ether to pay the transaction fee, which is inconvenient when the user does not own any Ether.
To alleviate the problem, the proxy-transfer method is introduced such that a user can authorize a
proxy to carry out a transaction and pay the proxy some extra tokens as its service fee. As shown
in Figure 9, when Alice is to transfer 100 MTC tokens to Bob, she can send a signed message off-
chain to a proxy (Step 1) such that the proxy launches a transaction to transfer 100 tokens to Bob
and receives 3 token from Alice for the service (Step 2). The signature is verified using function
transferProxy(), which uses the Solidity function ecrecover() to identify Alice’s account address
that issued the signature. However, Alice’s off-chain message may not provide her token contract
address that should be bound to her signature. As a consequence, the signature can be accepted
as valid with respect to any token contract address (e.g., MTC, UGToken, and GGoken), meaning
Bob can replay the signed message to other kinds of token contracts, such as UGToken (Step 4), to
obtain extra money from Alice (Step 5) [36].

4.1.8 Rubixi Attack (A13). The Rubixi contract is a Ponzi scheme containing an erroneous con-
structor name vulnerability (V17). The contract was originally named DynamicPyramid and later
renamed by the developer to Rubixi. However, the contract’s constructor name was not updated

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:23

accordingly, allowing anyone that calls the public function DynamicPyramid() to become the
owner of the contract and steal the funds of the contract.

4.2 Attacks at the Data Layer

4.2.1 ETH and ETC Cross-chain Replay Attack (A14). Ethereum had a hard fork after the DAO
attack, splitting into ETH and ETC that share the same transaction history. This means that a
transaction that was validated by the ETH network could also be accepted by the ETC network
when the recipient immediately rebroadcast the transaction on the ETC network, and vice versa
[124]. Since both ETC and ETH networks did not implement any defense against this attack that
exploited the indistinguishable chains vulnerability (V27), exchanges participating in both chains
(e.g., Coinbase and Yunbi) lost a large amount of money [10].

4.2.2 Under-priced DDoS Attacks (A15 and A16). These attacks [11, 20, 82] exploit both
application-layer and data-layer vulnerabilities. The first attack (A15) exploited the under-priced
opcodes vulnerability (V23) owing to the improper gas cost of EVM’s extcodesize opcode. Prior
to the EIP 150 hard fork, the extcodesize opcode only charged 20 gas for reading a contract’s
bytecode from disk and then deriving its length. As a consequence, the attacker can repeatedly
send transactions to invoke a deployed smart contract with many extcodesize opcodes to cause
a 2-3x slower block creation rate [11]. The second attack (A16) exploited the under-priced opcodes
vulnerability (V23) owing to the improper gas cost of EVM’s suicide opcode and the empty ac-
count in the state trie vulnerability (V28). The suicide opcode (renamed to selfdestruct after EIP
6) is meant to remove a deployed contract from the blockchain and send the remaining balance of
Ether to the account designated by the caller. When the target account does not exist, a new ac-
count is created even though no Ether may be transferred; this consumes merely 90 gas [20]. Since
an existing empty account is stored in the Ethereum state trie, the attacker created 19 million new
empty accounts via the suicide opcode at a low gas cost, which wasted considerable disk space
while increasing the synchronization and transaction processing time.

4.3 Attacks at the Consensus Layer

4.3.1 Ethereum Classic (ETC) 51% Attack (A17). In January 2019, ETC suffered from a 51% at-
tack that exploited the probabilistic finality vulnerability (V30), in which the attacker carried out
double-spending transactions against several exchanges, causing an estimated loss of US$1.1M
[47]. Since 2018, ETC’s mining hashrate has dropped significantly due to its declining price, which
lowered the amount of computing resources that are required for launching a 51% attack. More-
over, cloud mining services (e.g., NiceHash) make it even easier to launch 51% attacks. The attack
was disrupted when exchanges increased the number of blocks that are required for transaction
confirmation and limited the participation of malicious addresses in ETC trade.

4.3.2 Selfish-mining Attack (A18). This attack exploits the probabilistic finality vulnerability
(V30), the honest mining assumption vulnerability (V32), and the rewards for uncle blocks vulnera-
bility (V33) such that miners may withhold their newly mined blocks and selectively publish some
blocks to earn an unfair share of reward. A selfish miner monitors the situation on a blockchain’s
public branches, estimates its advantages, and reveals its private blocks accordingly. When the
public branches are shorter than the selfish-miner’s private branch, the honest miners will switch
to latter, rendering their previous mining effort useless and making the selfish-miners receive a
higher reward. Ritz et al. [161] conducted a Monte Carlo simulation to emulate the block gener-
ation process in Ethereum and quantified the impact of uncle rewards on selfish-mining. Their
simulation results showed that the uncle-block reward mechanism not only lowered the threshold
of computational power at which selfish-mining becomes profitable but also weakened the overall

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

67:24 H. Chen et al.

resilience against other attacks such as double-spending. Niu et al. [154] developed a mathematical
analysis on a selfish-mining strategy through a two-dimensional Markov process model, showing
that Ethereum is more vulnerable to selfish-mining than Bitcoin. Grunspan et al. [109, 110] rigor-
ously analyzed selfish-mining strategies in Ethereum and proved that brutal fork (i.e., keeping the
fork secret as long as possible and releasing it at once) is more profitable than releasing the fork
one block at a time.

4.3.3 Bribery Attacks (A19, A20, A21, and A22). Bribery attacks exploit the honest mining as-
sumption vulnerability (V32); this assumption is vulnerable, because miners can make profit by
taking bribes and changing their mining strategy to benefit the bribers. There are two kinds of
bribery attacks: (i) the in-band bribery attack pays bribes with the cryptocurrency that is under
attack; and (ii) the out-of-band bribery attack pays bribes with another cryptocurrency. McCorry
et al. [144] presented an in-band bribery attack (A19), which offers miners an extra bonus for
mining uncle blocks; as a consequence, the briber with 25% of the mining power can have full con-
trol over the blockchain. This attack also exploits the rewards for uncle blocks vulnerability (V33),
because rewards from mining uncle blocks are directly used to subsidize bribes paid by the at-
tacker. Winzer et al. [182] presented three in-band bribery attacks (A20), which allow the attacker
to prevent state changes to an account (i.e., temporary censorship). Out-of-band bribery attacks
against PoW cryptocurrencies include the Goldfinger bribery attack [144] (A21) and the no-fork
and near-fork incentive attacks [120] (A22).

4.3.4 Balance Attack (A23). This attack exploits the probabilistic finality vulnerability (V30) in
the presence of communication delays (or asynchronous networks). This attack was first reported
in Reference [150] via a theoretic analysis and testnet demonstration. The attack entails tran-
siently partitioning the network into multiple subgroups of similar mining power to launch the
double-spending attack on a subgroup of lower mining power. This allows the attacker to initiate
transactions with merchants in one subgroup, while mining blocks in another subgroup to make its
subtree outweigh the subtree mined in the victim group. After transactions in the victim subgroup
get confirmed, the attacker reconnects the network. Since the mining power is roughly equally
distributed among the subgroups, the subtree broadcast by the attacker has a good chance to be
selected as the main chain, meaning that the attacker can double-spend in the victim subgroup.
This attack was later deemed only theoretically possible, because partitioning a public Ethereum
network (e.g., using BGP-hijacking) may not be feasible in practice [97].

4.3.5 Resource Exhaustion Attack (A24). This attack exploits the verifier’s dilemma vulnerability
(V34) that miners may deviate from the protocol by not verifying resource-consuming transactions
to have an advantage in the race of mining the next block [140]. This attack incurs no price to
the miner that includes resource-intensive transactions in the new block it mined. The дasLimit
mechanism can mitigate, but cannot eliminate, this attack.

4.3.6 Incorrect Transaction Attack (A25). This attack exploits the honest mining assumption vul-
nerability (V32) and the verifier’s dilemma vulnerability (V34). Miners in Ethereum have a strong
incentive to skip the verification of resource-consuming transactions by accepting them to gain
an advantage in mining new blocks. This causes unverified transactions to be included in the
blockchain, posing serious consequences.

4.4 Attacks at the Network Layer

4.4.1 Account Hijacking Attack (A26). This attack exploits the RPC API exposure vulnerability
(V40). To sign transactions, an EOA must first decrypt its private key that is stored on the lo-
cal host and encrypted with a passphrase. This can be achieved by using the unlockAccount()

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:25

API of an Ethereum client, which uses the passphrase to obtain the private key and loads it into
the memory for 300 seconds (by default). The private key in memory can be accessed by any
Ethereum API without authentication. This can be exploited as follows. Ethereum clients (e.g.,
Geth, Parity) typically use the default ports 8545 (HTTP) and 8546 (WebSocket) as the JSON-RPC
interface. However, these clients neither configure those ports as local-only by default, nor adopt
precautions (e.g., disabling remote calls). This allows an attacker to scan open Ethereum nodes
and invoke eth_sendTransaction() API to transfer victims’ money to the attacker’s account. Once
a victim types its passphrase to unlock its account, the eth_sendTransaction() API will be suc-
cessfully executed. By the time the attack was observed in March 2018 [27], attackers had stolen
around US$20M from exposed Ethereum clients.

4.4.2 Eclipse Attacks (A27, A28, and A29). This attack allows an attacker, who can hijack the
connections of some victim nodes in the P2P network, to isolate those victim nodes from the rest
of the network. Victim nodes’ connections can be hijacked by connection monopolization [142],
poisoning victims’ routing tables [142], and falsifying neighbors [115]. First, the connection mo-
nopolization attack (A27) exploits the unlimited nodes creation vulnerability (V35) and the uncapped
incoming connections vulnerability (V36). When a client reboots, it has no incoming or outgoing
connections. An attacker can create plenty of node IDs in advance and initiate enough incoming
connections to the victim node immediately after its reboot. A node is eclipsed when its connec-
tion slots (25 by default) are occupied by incoming connections from the attacker. Second, despite
the defense (against the connection monopolization attack) that imposes an upper limit on the
number of incoming TCP connections, the following attackA28 can still succeed. An attacker can
exploit the public peer selection vulnerability (V37) to poison the victim nodes’ routing tables when
these tables are reboot and reset. For example, the attacker can craft fake nodes and insert them
into those routing tables to make the victim nodes’ outgoing TCP connections point to the fake
nodes. The attacker can further occupy the victim nodes’ remaining connection slots by initiat-
ing connections to the victim nodes. Third, instead of poisoning a victim’s entire routing table,
the false friends attack (A29) allows an attacker to insert a number of fake nodes into the victim’s
routing table to eclipse the victim node without restarting it. For example, the Geth client gets new
peers by choosing nodes from its routing table or lookup-buffer. By exploiting the fixed peer se-
lection vulnerability (V38), an attacker can make the victim node select the peers (from its routing
table) that are under the attacker’s control. The attacker can further exploit the unlimited nodes
creation vulnerability (V35) to generate a large number of node IDs to poison the lookup-buffer.
As a consequence, the victim node’s outbound connections point to the nodes controlled by the
attacker.

4.5 Further Analysis of Attack Consequences

Now, we present a taxonomy of the attack consequences mentioned above: unauthorized code
execution, DoS, unfair income, double-spending, and private key leakage. Figure 10 highlights the
relationships between these attack consequences, attacks and vulnerabilities.

Table 2 summarizes the attacks that have incurred substantial financial losses. Based on Figure 10
and Table 2, we make the following observations and insights. First, attacks against Ethereum have
successfully exploited a number of vulnerabilities, especially those that reside at the application
layer (i.e., V1 ≤ Vi ≤ V26). These vulnerabilities may be inherent to the permissionless and im-
mutability nature of the Ethereum blockchain, because the former allows anyone to access and
invoke the smart contracts on the blockchain (i.e., vulnerabilities can be exploited at will) and
the latter assures that the code of deployed smart contracts cannot be modified by anyone (i.e.,
impossible to patch their vulnerabilities). This leads to:

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

67:26 H. Chen et al.

Fig. 10. The relation between vulnerabilities, attacks, and attack consequences.

Table 2. Overview of Attacks and Financial Losses Incurred by Them

Attack
targets

Vulnerability
location Real-world attacks Attack consequences

Financial
losses

Smart

contract

Application
The DAO (A1) Unauthorized code exec. US$60M

Parity (i) (A2) Unauthorized code exec. US$31M

Parity (ii) (A3) DoS US$280M

Consensus
Fomo3D (ii) (A11) DoS US$3M

Ethereum
ETC 51% (A17) Double spending US$1.1M

Data ETH & ETC replay (A14) Unfair income US$0.5M
Network Account hijacking (A20) Private key leakage US$20M

Insight 8. Ethereum blockchain has two security barriers: permissionless (allowing attackers to
exploit vulnerabilities at will) and immutability (disabling the vulnerability-patching mechanism
widely used in cybersecurity).

Second, application-layer attacks have caused larger financial losses than their counterparts at
the lower layers. This is somewhat counterintuitive, because a vulnerability at a lower layer often
causes a more significant damage than a vulnerability at a higher layer. This can be attributed to
the fact that smart contracts operate directly on digital assets in EVM, which are isolated from the
host computer (i.e., smart contracts cannot access the file system or any process running on the
computer hosting the EVM). This leads to:

Insight 9. While application-layer attacks have caused huge financial losses, the damage did not
spread to the underlying hosts because of the EVM isolation.

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:27

Third, the so-far largest financial loss, $280M, is caused by a DoS attack against the Parity wallet,
which disables a library that is used by many contracts. This manifests both a new risk (i.e., DoS
causing direct, rather than indirectly, economic losses) and a new cause (i.e., DoS caused by code-
reuse). This leads to:

Insight 10. Code-reuse in smart contracts can impose a higher risk than its counterpart in tradi-
tional systems, highlighting the importance of security auditing on widely reused smart contracts and
libraries.

5 DEFENSES

In this section, we describe the 51 defenses that have been proposed for securing the Ethereum
ecosystem, which are denoted byD1, . . . ,D51, respectively. Unlike vulnerabilities and attacks that
naturally correspond to some layer of the Ethereum architecture, defenses are by no means geared
toward the layers. Therefore, we propose categorizing them into two classes: proactive defenses
and reactive defenses.

5.1 Proactive Defenses

We categorize existing proactive defense mechanisms into the following five sub-classes based on
the respective focus of these mechanisms: contract programming language, contract development,
contract analysis, contract and Ethereum enhancement, and consensus protocols.

5.1.1 Language-based Security. Programming language approaches to securing smart contracts
can be divided into two categories: high-level languages for developing more secure smart con-
tracts and intermediate-level languages for facilitating contract formal analysis.

High-level languages. Vyper [55] (D1) removes a number of functionalities provided by Solid-
ity (e.g., recursive calling, infinite loops, modifiers) and adds several new features (e.g., bounds
and overflow checking) to eliminate vulnerabilities, such as the DoS with unbounded operations
vulnerability (V14), the erroneous visibility vulnerability (V9), and the integer overflow and under-
flow vulnerability (V6). Bamboo [24] (D2) uses polymorphism to mitigate the transaction-ordering
dependence vulnerability (V24), while eliminating the reentrancy vulnerability (V1) and the DoS
with unbounded operations vulnerability (V14). Obsidian [84] (D3) models smart contracts as finite
state machines and tracks contracts’ states to eliminate the reentrancy vulnerability (V1). Flint
[167] (D4) uses an Asset type to assure the atomicity of operations and introduces restrictions
on callers’ capabilities to protect contract functions from unauthorized access, while aiming to
eliminate the reentrancy vulnerability (V1), the erroneous visibility vulnerability (V9), the integer
overflow and underflow vulnerability (V6), the unchecked call return value (V15), and the timestamp
dependency vulnerability (V25).

Intermediate-level languages. Simplicity [156] (D5) is an intermediate representation between
high-level languages and low-level EVM. It provides formal semantics using the proof-assistant
Coq [44], thus allowing formal analysis of contracts properties (e.g., safety and liveness). Scilla
[169] (D6) distinguishes intra-contract computation from inter-contract communication to disen-
tangle contract-specific effects from each other.

5.1.2 Contract Development. Since smart contracts are a new programming paradigm, these
defenses can help developers in avoiding or mitigating common vulnerabilities.

Principles and best practices. A number of Solidity best practices were recommended in Refer-
ence [49], such as check, update, then interact (i.e., checking conditions first, then updating state
variables, and finally interacting with other contracts); and favor pull over push for external calls

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

67:28 H. Chen et al.

Fig. 11. Best practices and principles for guiding contract development.

(i.e., letting a recipient withdraw or “pull” the money set by the sender, rather than letting the
sender directly transfer or “push” the money to the recipient). To help practitioners adopt the best
practices, we systematize 19 best practices (D7) according to the vulnerabilities toward which
they are geared, while noting that 15 of the 19 best practices were scattered in References [30, 49,
54]. As highlighted in Figure 11, our systematization leads to four principles or six specific sub-
principles. Intuitively, a programmer should be conscious of four kinds of controls: call control,
data control, resource control, and tool control. (i) The call control principle says that a programmer
should secure the interactions between smarts contracts and the interactions between EOAs and
smart contracts. It is further divided into two sub-principles: one coping with the callee’s unex-
pected behaviors and the other coping with the caller’s access control. (ii) The data control principle
says that a programmer should secure the data flow of a contract. It is further divided into two
sub-principles: one dealing with the protection of sensitive data and the other dealing with the
prevention of malformed data from entering a smart contract. (iii) The resource control principle
says that a programmer should mitigate the exhaustion of available gas in Ethereum. (iv) The tool
control principle says that a programmer should use updated tools (e.g., compiler, debugger) to
eliminate known vulnerabilities.

Software engineering mechanisms. To defend against attacks that may exploit unknown vulnera-
bilities, several blockchain-oriented software engineering mechanisms were introduced [49] (D8),
such as: rate limit, which restricts the number of consecutive actions incurred by an EOA or re-
stricts the amount of Ether sent by a contract within a period of time; balance limit, which regulates
the maximum amount of funds that can be held by a contract; speed bump, which postpones some
potentially damaging operations.

5.1.3 Smart Contract Analysis. These defenses aim to enhance security of smart contracts via
symbolic execution, abstract interpretation, formal verification, fuzzing, and model-based vulner-
ability detection.

Symbolic execution. It works on a program’ control-flow graph (CFG) and traverses all of the
feasible execution paths on the graph to identify vulnerabilities [127]. This approach achieves
neither soundness (i.e., zero false-negatives) nor completeness (i.e., zero false-positives), owing
to the omission of some execution paths and the exploration of unreachable paths in real exe-
cutions. Oyente [139] (D9) can detect four types of vulnerabilities—the reentrancy vulnerability
(V1), the mishandled exceptions vulnerability (V15), the transaction-ordering dependence vulnera-
bility (V24), and the timestamp dependence vulnerability (V25)—but incurs a high false-positive rate
[121]. Maian [152] (D10) extends Oyente by considering multiple invocations of a contract, rather

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:29

Fig. 12. Theorem proving for verifying smart contracts.

than a single invocation. It can detect three types of vulnerabilities: the frozen Ether vulnerability
(V3), the leaking Ether to arbitrary address vulnerability (V11), and the unprotected suicide vulner-
ability (V10). Mythril [51] (D11) uses “concolic analysis,” which integrates symbolic and concrete
execution of a smart contract, to detect eight types of vulnerabilities, such as the manipulated
balance vulnerability (V7), the authentication through tx.origin vulnerability (V8), and the gener-
ating randomness vulnerability (V26). The teEther tool [130] (D12) can detect vulnerabilities like
the erroneous visibility vulnerability (V9) and the erroneous constructor name vulnerability (V17).
The sCompile tool [79] (D13) reduces the number of suspicious execution paths that are not re-
lated to money-transfer. It can detect four types of vulnerabilities: the reentrancy vulnerability
(V1), the frozen Ether vulnerability (V3), the unprotected suicide vulnerability (V10), and the Ether
lost to orphan address vulnerability (V21). ECF [108] (D14) focuses on detecting callback-related
vulnerabilities, such as the reentrancy vulnerability (V1).

Abstract interpretation. Abstract interpretation aims to over-approximate the semantics of a pro-
gram to achieve soundness in program analysis [87]. Securify [176] (D15) defines a set of compli-
ance and violation patterns to characterize how contract comply and violate security properties ex-
tracted from some known vulnerabilities, such as the reentrancy vulnerability (V1), the delegatecall
injection vulnerability (V2), and the frozen Ether vulnerability (V3). Zeus [121] (D16) defines a set of
correctness and fairness policies and then embeds them as assert statements into the source code
of contracts. It can detect six types of vulnerabilities, such as the reentrancy vulnerability (V1) and
the unchecked call return value vulnerability (V15). FSolidM [143] (D17) abstracts smart contracts as
finite state machines and can detect the reentrancy vulnerability (V1) and the transaction-ordering
dependence vulnerability (V24). MadMax [104] (D18) disassembles EVM bytecode into an interme-
diate representation and then leverages both data-flow analysis and context-sensitive flow analysis
to detect gas-related vulnerabilities, such as the DoS with unbounded operations vulnerability (V14).
Vandal [75] (D19) translates EVM bytecode into logic relations and use them to detect a number
of vulnerabilities, such as the reentrancy vulnerability (V1), the authentication through tx.origin
vulnerability (V8), the unprotected suicide vulnerability (V10), and the unchecked call return value
vulnerability (V15). To facilitate the aforementioned high-level contract analysis, several reverse
engineering tools have been developed to convert EVM bytecode to source or intermediate code.
Porosity [171] (D20) is a decompiler for producing Solidity source code from EVM bytecode. Erays
[199] (D21) lifts EVM bytecode to a high-level pseudocode by recovering the control-flow struc-
ture and transforming EVM from a stack-based machine to a register-based machine. EthIR [61]
(D22) decompiles EVM bytecode to a high-level rule-based representation, which can then be fed
into an automated static analyzer to infer high-level properties of the EVM bytecode.

Formal verification. Formal verification proves the correctness of contract implementation with
respect to a specification. This approach assures completeness (i.e., no false positives). Figure 12
illustrates how to use theorem-proving to verify smart contracts at the EVM bytecode-level. Hirai

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

67:30 H. Chen et al.

[117] (D23) took the first step toward formalizing the EVM semantics, which can be accommodated
by interactive theorem provers like Isabelle/HOL [153] to prove invariants and safety properties of
smart contracts. Amani et al. [63] (D24) extend the work in Reference [117] by splitting a contract
into some basic blocks and then using a Hoare-style program logic to reason about semantic prop-
erties of contracts from properties of its parts. Hildenbrandt et al. [116] (D25) present a complete
semantics of the EVM, referred to as KEVM, using the K framework [163] to achieve language-
independent program verification. Park et al. [157] (D26) optimize the KEVM verifier by intro-
ducing EVM-specific abstractions and lemmas to avoid non-tractable reasoning in the underlying
theorem prover. Grishchenko et al. [107] (D27) define a complete small-step semantics of EVM
bytecode and formalize most of the semantics in the proof assistant F* [173]. Grishchenko et al.
[105, 106] (D28) leverage the complete small-step semantics of EVM bytecode to build EtherTrust,
which is the first sound and automated static analyzer to achieve formal security related to the
reachability properties of EVM bytecode. Other early stage investigations include References [4,
70, 71].

Fuzzing. Fuzz testing has been used to detect vulnerabilities in smart contracts. ContractFuzzer
[119] (D29) can detect five types of vulnerabilities, such as the reentrancy vulnerability (V1) and
the unchecked call return value vulnerability (V15). It generates inputs by crawling the ABI inter-
faces of smart contracts to extract their function selectors and data types of each argument, and
instruments EVM to log contract execution behaviors for inspection. ReGuard [138] (D30) aims
to detect the reentrancy vulnerability (V1) in smart contracts by transforming smart contracts to
semantically equivalent C++ program and generating random transactions via a fuzzing engine to
check the execution traces of the C++ program.

Model-based vulnerability detection. Tann et al. [174] (D31) use sequence learning to detect three
types of vulnerabilities, namely, the frozen Ether vulnerability (V3), the leaking Ether to arbitrary
address vulnerability (V11), and the unprotected suicide vulnerability (V10). Tikhomirov et al. [175]
(D32) propose SmartCheck to detect vulnerabilities in Solidity contracts by translating Solidity
source code into an XML-based parse-tree and checks it against specific XPath patterns; they can
detect 10 types of vulnerabilities, such as the DoS with unexpected revert vulnerability (V5), the
manipulated balance vulnerability (V7), but incur a high false-positives rate.

5.1.4 Contract and Ethereum Enhancement. Kosba et al. [129] proposed a countermeasure (D33)
to use cryptographic mechanisms to hide transaction data and allow contract developers to build
confidentiality-preserving smart contracts. This countermeasure can defend against the attacks
that exploit the confidentiality failure vulnerability (V12) and the transaction-ordering dependence
vulnerability (V24). Zhang et al. [195] designed an authenticated data feed system (D34), dubbed
Town Crier, for smart contracts that require access to external data. This system can be used to
mitigate the generating randomness vulnerability (V26). Adler et al. [60] proposed a new defense
(D35), which extends Town Crier by implementing a voting-based decentralized oracle to address
the centralized point-of-failure that is inherent to Town Crier. Chen [82] proposed an adaptive gas
cost mechanism (D36) to defend against DoS attacks exploiting the under-priced opcodes vulner-
ability (V23), by dynamically adjusting the cost of EVM operations according to their execution
time. To harden the Ethereum network against eclipse attacks, Marcus et al. [142] proposed a coun-
termeasure (D37) to eliminate complicated artifacts of the Kademlia protocol used by Ethereum.
Henningsen et al. [115] proposed a countermeasure (D38) against the eclipse attack exploiting
the fixed peer selection vulnerability (V38). Wang et al. [180] proposed a countermeasure (D39) to
defend Ethereum clients against attacks exploiting the RPC API exposure vulnerability (V40).

5.1.5 New Blockchain Protocols. To tackle the outsourceable puzzle vulnerability (V29), Miller
et al. [146] formalized the notion of non-outsourceable puzzles and employed Merkle-tree-based

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:31

proofs for puzzle design (D40). The basic idea underlying non-outsourceable puzzles is: If a pool
operator outsources the mining task to miners, then the miners can collect the full credit while
the pool operator gets nothing, which effectively disincentivizes pool operators from outsourc-
ing their mining tasks. Zeng et al. [194] extended the work of Reference [146] by proposing a
non-outsourceable puzzle (D41) that is compatible with the GHOST protocol used by Ethereum.
Daian et al. [88] designed a two-stage non-outsourceable puzzle (D42) where the outer puzzle re-
lies on the solution to the inner puzzle. Eyal et al. [1] proposed two-phase proof of work (D43)
to disincentivize large mining pools, by incorporating two puzzles (instead of one) for miners to
solve. Luu et al. [141] implemented a new decentralized pooled mining protocol (D44) to defend
against mining centralization, by replacing the traditional mining pool operator with an Ethereum
smart contract. To address the probabilistic finality vulnerability (V30), the Ethereum community
proposed the checkpoint mechanism [77] (D45) and the safety oracle decision mechanism [149]
(D46) in the upcoming PoS upgrade to ensure deterministic finality as long as at least 2/3 of the
validators behave honestly. To mitigate the verifier’s dilemma vulnerability (V34), Luu et al. [140]
implemented a consensus-based protocol (D47) in Ethereum to incentivize miners to verify all
transaction in each new block.

5.2 Reactive Defenses

Reactive defenses aim to react to potential exploitations of (unknown) vulnerabilities during the
contract runtime to mitigate the damage. A runtime verification method monitors the execution
traces to detect and possibly react to suspicious activities that may violate certain properties.
DappGuard [86] (D48) actively monitors the incoming transactions to a smart contract and
leverages the aforementioned tool Oyente [139] to decide whether or not an incoming transaction
can cause a security violation and, if so, then a counter transaction can be invoked to kill the
contract in question. ContractLarva [98] (D49) generates a new Solidity contract from the original
contract and its specification, checks the original contract’s runtime behaviors against this new
contract’s, and takes appropriate actions in the case of any discrepancy. Sereum [162] (D50) uses
taint analysis to monitor runtime data flows during smart contract execution for detecting and
preventing the reentrancy vulnerability (V1). When detecting a violation, various mechanisms
(D51) have been proposed for mitigating the damage: (i) disabling the vulnerable smart contract
or sensitive functionalities by using (for example) the emergency stop mechanism [183]; (ii)
adopting a stake-placing mechanism to assure that any invocation, which potentially violates
some properties, should pay a stake of compensation before running the contract and returns the
stake back to the caller after the contract terminates normally; (iii) replacing vulnerable contracts
with secure ones using the virtual upgrade mechanism [49], which can be realized by using a
registry contract to hold the address of the latest version of a contract or by introducing a proxy
contract to delegate calls to the latest version of a contract.

5.3 Further Analysis Based on Defense Capabilities

Now, we analyze defenses from the perspective of defense capabilities, meaning which defense can
defend against the attacks that exploit certain vulnerabilities. Figure 13 plots the Venn diagram of
the six kinds of defenses discussed above, including five kinds of proactive defenses (i.e., alternate
language, contract analyzer, security enhancement, contract best practices, blockchain protocols) and
one kind of reactive defenses (i.e., runtime verification). For proactive defense, we observe: (i) using
contract best practices in the course of developing contracts can prevent or mitigate attacks that
attempt to exploit 22 types of application-layer vulnerabilities; (ii) using smart contract analyzer
can detect or mitigate attacks that attempts to exploit 18 types of application-layer vulnerabilities;
(iii) using security enhancement can prevent or mitigate attacks that attempts to exploit 9 types of
vulnerabilities, including 4 application-layer vulnerabilities and 5 network-layer ones; (iv) using

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

67:32 H. Chen et al.

Fig. 13. Venn diagram representation of defenses against the attacks that exploit 31 vulnerabilities, while

noting that the other 9 vulnerabilities either have been eliminated or have yet to be coped with. In total,

proactive defenses can defend against attacks that attempt to exploit 31 types of vulnerabilities, whereas

reactive defenses can defend attacks that attempt to exploit 4 types of vulnerabilities, which are also covered

by proactive defenses.

better-designed contract programming language (i.e., alternate languages for short) can prevent or
mitigate attacks that attempt to exploit 7 types of application-layer vulnerabilities; (v) using better-
designed blockchain protocols can mitigate attacks that attempt to exploit 3 types of consensus-
layer vulnerabilities. For reactive defense, we observe that using runtime verification can mitigate
attacks that attempt to exploit 4 types of application-layer vulnerabilities.

Insight 11. Proactive defenses can defend against attacks that attempt to exploit many vul-
nerabilities. In contrast, reactive defenses can defend against attacks that attempt to exploit a few
vulnerabilities.

Insight 11 reflects the state-of-the-art. Nevertheless, reactive defenses are still important, be-
cause they may be able to defend attacks attempting to exploit the vulnerabilities that survived
proactive defenses.

We observe that the vulnerabilities that can be defended by runtime verification are subsets of
the vulnerabilities that can be defended by alternate languages, which are in turn a subset of the
vulnerabilities that can be defended by contract analyzers. While contract development best practices
can mitigate most vulnerabilities at the application layer, they rely on developers’ programming
skills and cannot tackle the other vulnerabilities (e.g.,V23).

Insight 12. There is no single silver-bullet defense at the application layer, let alone the entire
Ethereum system, highlighting the necessity of layered defense-in-depth.

We further observe that alternate programming languages can prevent the attacks that attempt
to exploit seven types of vulnerabilities, among which four (i.e., V1, V6, V9, V14) are caused by
smart contract programming, one (i.e.,V15) is caused by Solidity language, and the other two (i.e.,
V24,V25) are caused by Ethereum blockchain. This leads to:

Insight 13. A better language can make smart contracts more secure and achieve a higher fault-
tolerance.

5.4 Further Analysis Based on Defense Investment

Now, we present an analysis of defenses from the perspective of defense investment, meaning how
much effort has been invested in designing defense against attacks that exploit a certain vulnera-
bility. However, we note that some defenses are not geared toward any specific vulnerabilities or
attacks; for example, software engineering mechanisms (i.e., D8) are neither geared toward any
specific vulnerability nor geared toward any specific attack.

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:33

Fig. 14. The number of defenses with respect to each vulnerability.

Figure 14 plots the summary of the number of defense mechanisms with respect to individ-
ual vulnerabilities. Table 1 of the Appendix highlights which vulnerabilities may be protected by
which defenses. For example, Figure 14 shows thatV1 can be defended by 17 defenses, which are
highlighted in Table 1. We observe that the most extensively investigated vulnerability is the reen-
trancy vulnerability (V1), which can be mitigated by 17 defense mechanisms. Other vulnerabilities
that have been substantially investigated include: the unchecked call return value vulnerability
(V15) and the transaction-ordering dependence vulnerability (V24), which can be defended by 10
and 9 defense mechanisms, respectively; the frozen Ether vulnerability (V3) and the timestamp
dependence vulnerability (V25) can be defended by 7 defense mechanisms. It appears that the vul-
nerabilities that have been thoroughly investigated are (i) the ones that have caused large financial
losses, (ii) the ones that are inherent to the design of the Solidity language, and (iii) the ones that
are inherent to the profit-making factor for assembling blocks. This is so because the reentrancy
vulnerability (V1) has caused the loss of US$60M in the DAO attack (i.e., attack A1 in Figure 10),
the frozen Ether vulnerability (V3) has caused the loss of US$280M in the Parity wallet attack (i.e.,
attack A3), the unchecked call return value vulnerability (V15) is inherent to the exception han-
dling mechanism in the Solidity language, the transaction-ordering dependence vulnerability (V24)
is inherent to the unpredictable nature of the Ethereum blockchain, and the timestamp dependence
vulnerability (V25) is inherent to the manipulable block information of the Ethereum blockchain.
However, we observe 14 vulnerabilities that have zero or one defense mechanism. Most of these
vulnerabilities are caused by the Ethereum design and implementation. This leads to:

Insight 14. There is a large discrepancy between the efforts invested to defend against different
attacks.

Insight 14 is interesting, because it seems that the defense effort has been driven by the con-
sequential financial loss incurred by the exploitation of certain vulnerabilities. This prioritization
strategy is not adequate, because it suggests in a sense that the defender is always chasing behind
the attacker, who detects and exploits an vulnerability that then becomes known to the defender.

6 ETHEREUM ONGOING DEVELOPMENT AND COMPARISON WITH OTHER

BLOCKCHAINS

6.1 Upcoming PoS Upgrade Toward Ethereum 2.0

Since PoW-based consensus is not environment-friendly, Ethereum plans to upgrade to PoS-based
consensus or Ethereum 2.0 [48]. At the time of writing, two PoS proposals are under considera-
tion: Casper the Friendly Finality Gadget (Casper FFG) [77] and Casper Correct-by-Construction
(Casper CBC) [193]. Casper FFG is initially introduced to run on top of the current PoW-based

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

67:34 H. Chen et al.

main chain, but is later adjusted to run on top of a separate PoS-based chain, dubbed the beacon
chain, which runs in parallel to the PoW-based main chain. Casper FFG leverages the checkpoint
mechanism to attain finality, meaning that the blockchain is immutable up to the last finalized
checkpoint. A checkpoint is set for everym (e.g.,m = 100) blocks and is considered finalized when
the checkpoint itself and its subsequent checkpoint both receive votes from at least 2/3 of the
voters. In contrast, Casper CBC is a framework to create a family of “correct-by-construction”
consensus protocols based on rigorous mathematical models. It intends to achieve asynchronous
safety in the presence of Byzantine faults. It uses a decision mechanism called safety oracle, which
allows validators to reach decisions on the finalized blocks while assuming that 2/3 of the valida-
tors are honest [149].

Although PoS has advantages over PoW, existing PoS protocols [69, 76, 90, 123, 128, 145] are
vulnerable to one or more of the following attacks. (i) The nothing-at-stake attack [132], where
the attacker generates multiple conflicting blocks to maximize its benefit without risking its stake.
This attack is possible because generating blocks in PoS incurs essentially no cost. (ii) The long-
range attack [101, 132], where the attacker generates a new branch starting from an earlier block
to overtake the main chain. This attack is possible when the attacker controls majority of the stake
at some past long-range block. There are three kinds of long-range attacks: simple attack, posterior
corruption attack, and stake bleeding attack [91]. (iii) The grinding attack [123], where the attacker
manipulates the leader election process to increase its chance of being elected to generate blocks.
This attack is possible when a PoS protocol leverages data in the blockchain itself (e.g, previous
block hash) to generate randomness for electing the next block proposer.

The details of Casper CBC has not been released, because it is still under investigation. In what
follows, we only discuss how Casper FFG defends against the attacks mentioned above. (i) To cope
with the nothing-at-stake attack, Casper FFG introduces the slashing mechanism to heavily penal-
ize the misbehaving validators that generate conflicting blocks, while rewarding validators who
provide evidence for the misbehavior. This mechanism can deter some misbehaving validators, but
cannot prevent targeted attacks (e.g., double-spending) where the attacker can benefit from fork-
ing the blockchain (after paying the penalty). (ii) To defend against the long-range attack, Casper
FFG modifies the fork choice rule such that the blockchain up to the most recently finalized check-
point will never be reverted. A freezing mechanism is also used to prevent malicious coalition of
validators, by locking down validators’ deposits for a long period of time before allowing them
to take their deposits back. This defense cannot eliminate the long-range attack, because block
reorganisation can still happen [91]. (iii) To create non-exploitable randomness, Ethereum 2.0 is
considering to combine the RANDAO protocol with VDFs to randomly select block-proposers on
the beacon chain. However, the current VDFs are complex and are not post-quantum secure [72,
73, 181]. Note that the grinding attack is not applicable to Casper FFG, because this protocol is a
finality overlay atop the beacon chain of Ethereum 2.0, providing no leader election function.

6.2 Comparing Ethereum with Other Blockchains Supporting Smart Contracts

Perhaps inspired by the success of Ethereum, there have been many blockchain platforms that
support smart contracts [31]. Among them, EOS [33] and Hyperledger Fabric (where smart
contracts are also called chaincode) [64] are widely used. We observe that the taxonomy of root
causes of Ethereum smart contract vulnerabilities (Section 3) can be equally applied to EOS and
Hyperledger Fabric (and other platforms supporting smart contracts). This allows us to compare
these three representative platforms in the following aspects: vulnerabilities caused by smart
contract programming, vulnerabilities caused by programming languages and tool chain, and
vulnerabilities caused by blockchain platform design and implementation. Since there are very few

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:35

Table 3. Comparing Smart Contract Vulnerabilities in Three Representative Blockchain Platforms

���������Platform
Cause Smart contract

programming
Programming languages

and tool chain

Blockchain platform
design and

implementation

Ethereum
V1, . . . ,V14 (14 in

total)
V15, . . . ,V19 (5 in total)

V20, . . . ,V26 (7 in
total)

EOS

Numerical overflow
[46], Authorization

check [46], Apply check
[46], Transfer error

prompt [46, 159]

Buffer overflows [28],
Dangling pointer
references [28]

Roll back [46],
Generating randomness

[46], Transaction
congestion [45]

Hyperledger Fabric
Unchecked input [29],
Unhandled errors [29]

Global state [29], Field
declarations [29],

Blacklisted imports [29],
Goroutines [29], Map
range iterations [29],

Reified object addresses
[192], System timestamp

[178], Generating random
number [178]

Read your write [29],
Range query risk [29]

papers [118, 159, 178, 192] studying EOS and Fabric smart contract vulnerabilities, we searched
Internet blogs and forums [28, 29, 45, 46] to collect information on their vulnerabilities.

Table 3 highlights the comparison, while considering C++ and Go as the respective program-
ming language for EOS and Hyperledger Fabric, because they are widely used. We observe the
following. (i) Ethereum has much more types of vulnerabilities (than EOS and Hyperledger Fab-
ric) and most vulnerabilities are specific to the Solidity language, which might have imposed a
new learning curve and caused many new vulnerabilities. (ii) Hyperledger Fabric has many types
of vulnerabilities that can be attributed to the non-deterministic nature of some Go instructions
(i.e., an operation may produce different results when executed at different peers). (iii) Each of the
three platforms has some vulnerabilities that are specific to its architecture. This leads to:

Insight 15. Blockchains using different programming languages and architectures have different
vulnerabilities.

7 FUTURE RESEARCH DIRECTIONS

Eliminating known Ethereum vulnerabilities. There are 13 Ethereum vulnerabilities that are
largely unaddressed. First, 2 vulnerabilities at the application layer, upgradable contract (V4) and
type casts (V18), needed to be addressed possibly by using new smart contract design pattern and
type system. Second, 8 vulnerabilities inherent to the Ethereum blockchain design need to be ad-
dressed, including under-priced opcodes (V23), generating randomness (V26), outsourceable puzzle
(V29), probabilistic finality (V30), DoS with block stuffing (V31), honest mining assumption (V32), re-
wards for uncle blocks (V33) and verifier’s dilemma (V34). For these purposes, we need to design
new gas cost mechanisms, fair randomness mechanisms, consensus mechanisms, and incentive
mechanisms. Third, 3 vulnerabilities inherent to the implementation of Ethereum clients need to
be addressed, including unlimited nodes creation (V35), public peer selection (V37) and sole block
synchronization (V39). For these purposes, we need to design new P2P network protocols.

Developing Ethereum test tools and environments. For test tools, Table 1 highlights that
no detector can detect all of the known Ethereum application-layer vulnerabilities, as the cur-
rently best detector, SmartCheck (D32), can only detect 10 (out of the 26) types of vulnerabilities at

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

harsh
Highlight

harsh
Highlight

67:36 H. Chen et al.

the price of high false-positives. This highlights the importance to develop better smart contract
vulnerability detectors. For this purpose, deep learning might be useful as shown in References
[135, 136]. Moreover, it is important to monitor smart contracts runtime behavior for detecting
attacks, because vulnerability detectors cannot be perfect; this runtime verification approach is
largely unexplored. For test environment, EVM currently only supports domain-specific languages
(e.g., Solidity) that have imposed a new learning curve and imposed new vulnerabilities. Enhance
EVM to support general-purpose programming languages might help avoid many vulnerabilities.
Moreover, it is imperative to develop an Ethereum testbed for adequately testing smart contracts
before deploying them in the real world. This lack of testbed has caused the deployment of smart
contracts that are not well tested. To evaluate designs and implementations of Ethereum consensus
protocols and P2P network protocols, a flexible Ethereum network emulator is very valuable.

Formalizing, analyzing and quantifying Ethereum security. First, there is a urgent need to
understand the desirable security properties of Ethereum. There are only informal discussions on
its security properties [62, 112, 113, 196], representing a very preliminary first step. Second, there
is a urgent need to develop principled and rigorous methodologies to analyze that the desirable
properties are indeed satisfied. Third, there is a urgent need to quantify Ethereum security (or
risk), because attacks against Ethereum are likely inevitable. This calls for security metrics and
analysis methodologies. For this purpose, one may adopt or adapt existing security metrics (e.g.,
[81, 83, 147, 151, 155, 158, 160]) and the general security quantification methodology known as
cybersecurity dynamics [111, 134, 137, 187–191, 197, 198].

8 CONCLUSION

We have presented a systematic survey on the security of the Ethereum system, including its ap-
plication, data, consensus, and network layers. The survey considered three perspectives, namely,
vulnerabilities, attacks, and defenses, while correlating them. We discussed not only the locations
of the vulnerabilities but also their root causes. We systematized the attacks against, and the de-
fenses for, the Ethereum system. We further systematized the best practices proposed by industry
into a small number of guiding principles, which might be easier to adopt by practitioners. We
provide insights into the state-of-the-art and into future research directions.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments that guided us in improving the article.
Approved for public release; distribution unlimited: 88ABW-2019-3890; dated 12 August 2019.

REFERENCES

[1] Ittay Eyal and Emin Gün Sirer. 2014. How to disincentivize large Bitcoin mining pools. Retrieved from http:

//hackingdistributed.com/2014/06/18/how-to-disincentivize-large-bitcoin-mining-pools/.

[2] Fabian Vogelsteller and Vitalik Buterin. 2015. ERC-20 Token Standard|Ethereum Improvement Proposals. Retrieved

from https://eips.ethereum.org/EIPS/eip-20.

[3] Least Authority. 2015. Ethereum Analysis: Gas Economics and Proof of Work. Retrieved from https://github.com/

LeastAuthority/ethereum-analyses.

[4] Ethereum Community Forum. 2015. Formal Verification for Solidity Contracts. Retrieved from https://forum.

ethereum.org/discussion/3779/formal-verification-for-solidity-contracts.

[5] Phil Daian. 2016. Analysis of the DAO exploit. Retrieved from http://hackingdistributed.com/2016/06/18/analysis-

of-the-dao-exploit/.

[6] Vitalik Buterin. 2016. EIP-150, gas cost changes for IO-heavy operations. Retrieved from https://github.com/

ethereum/EIPs/blob/master/EIPS/eip-150.md.

[7] Vitalik Buterin. 2016. EIP-155, simple replay attack protection. Retrieved from https://github.com/ethereum/EIPs/

blob/master/EIPS/eip-155.md.

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

http://hackingdistributed.com/2014/06/18/how-to-disincentivize-large-bitcoin-mining-pools/
http://hackingdistributed.com/2014/06/18/how-to-disincentivize-large-bitcoin-mining-pools/
https://eips.ethereum.org/EIPS/eip-20
https://github.com/LeastAuthority/ethereum-analyses
https://github.com/LeastAuthority/ethereum-analyses
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-150.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-150.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:37

[8] Gavin Wood. 2016. EIP-161, state trie clearing. Retrieved from https://github.com/ethereum/EIPs/blob/master/EIPS/

eip-161.md.

[9] Joris Bontje. 2016. How can I securely generate a random number in my smart contract? Retrieved

from https://ethereum.stackexchange.com/questions/191/how-can-i-securely-generate-a-random-number-in-my-

smart-contract.

[10] Alyssa Hertig. 2016. Rise of Replay Attacks Intensifies Ethereum Divide—CoinDesk. Retrieved from https://www.

coindesk.com/rise-replay-attacks-ethereum-divide.

[11] Vitalik Buterin. 2016. Transaction spam attack: Next Steps. Retrieved from https://blog.ethereum.org/2016/09/22/

transaction-spam-attack-next-steps/.

[12] Peter Vessenes. 2016. Tx.Origin And Ethereum Oh My! Retrieved from https://vessenes.com/tx-origin-and-

ethereum-oh-my/.

[13] Matt Suiche. 2017. The $280M Ethereum’s Parity bug—Comae Technologies. Retrieved from https://blog.comae.io/

the-280m-ethereums-bug-f28e5de43513.

[14] Nooku. 2017. Exploit with ERC20 token transactions from exchanges. Retrieved from https://www.reddit.com/r/

ethereum/comments/63s917/worrysome_bug_exploit_with_erc20_token/dfwmhc3/.

[15] Ethererik. 2017. GovernMental’s 1100 ETH jackpot payout is stuck because it uses too much gas. Retrieved from

https://www.reddit.com/r/ethereum/comments/4ghzhv/governmentals_1100_eth_jackpot_payout_is_stuck/.

[16] Haseeb Qureshi. 2017. A hacker stole $31M of Ether—How it happened, and what it means for Ethereum. Retrieved

from https://medium.freecodecamp.org/a-hacker-stole-31m-of-ether-how-it-happened-and-what-it-means-for-

ethereum-9e5dc29e33ce.

[17] Paweł Bylica. 2017. How to Find $10M Just by Reading the Blockchain. Retrieved from https://medium.com/golem-

project/how-to-find-10m-by-just-reading-blockchain-6ae9d39fcd95.

[18] Lorenz Breidenbach, Phil Daian, Ari Juels, and Emin Gün Sirer. 2017. An In-Depth Look at the Parity Multisig Bug.

Retrieved from http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/.

[19] Santiago Palladino. 2017. The Parity Wallet Hack Explained. Retrieved from https://blog.zeppelin.solutions/on-the-

parity-wallet-multisig-hack-405a8c12e8f7.

[20] Vbuterin. 2017. A state clearing FAQ. Retrieved from https://www.reddit.com/r/ethereum/comments/5es5g4/a_

state_clearing_faq/?st=iw2e1mwo&sh=fa7768&depth=1.

[21] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen. 2020. A survey on the security of blockchain systems. Future Gen.

Comput. Syst. 107 (2020), 841–853.

[22] Lorenz Breidenbach, Phil Daian, Ari Juels, and Florian Tramèr. 2017. To Sink Frontrunners, Send in the Submarines.

Retrieved from http://hackingdistributed.com/2017/08/28/submarine-sends/.

[23] Crypto Panda. 2018. The $3 Million Winner of Fomo3D Is Still Playing to Win—Longhash. Retrieved from https:

//www.longhash.com/news/the-3-million-winner-of-fomo3d-is-still-playing-to-win.

[24] Cornell Blockchain. 2018. Bamboo. Retrieved from https://github.com/pirapira/bamboo.

[25] Common Vulnerabilities and Exposures. 2018. BatchOverflow. Retrieved from http://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2018-10299.

[26] Louis Poinsignon. 2018. BGP leaks and cryptocurrencies. Retrieved from https://blog.cloudflare.com/bgp-leaks-and-

crypto-currencies/.

[27] SlowMist. 2018. Billions of Tokens Theft Case cause by ETH Ecological Defects. Retrieved from https://mp.weixin.

qq.com/s/ia9nBhmqVEXiiQdFrjzmyg.

[28] Mihail Sotnichek. 2018. EOS Smart Contract Vulnerabilities in Detail. Retrieved from https://www.apriorit.com/dev-

blog/553-eos-smart-contract-vulnerability.

[29] ChainSecurity AG. 2018. ChainSecurity Chaincode Scanner. Retrieved from https://chaincode.chainsecurity.com/.

[30] Adrian Manning. 2018. Comprehensive list of known attack vectors and common anti-patterns. Retrieved from

https://github.com/sigp/solidity-security-blog.

[31] Vaibhav Saini. 2018. ContractPedia: An Encyclopedia of 40+ Smart Contract Platforms. Retrieved from https:

//hackernoon.com/contractpedia-an-encyclopedia-of-40-smart-contract-platforms-4867f66da1e5.

[32] Common Vulnerabilities and Exposures. 2018. CVE-2018-10299. Retrieved from https://nvd.nist.gov/vuln/detail/

CVE-2018-10299.

[33] Block.one. 2018. EOS.IO Technical White Paper v2. Retrieved from https://github.com/EOSIO/Documentation/blob/

master/TechnicalWhitePaper.md.

[34] Georgios Konstantopoulos. 2018. How to Secure Your Smart Contracts: 6 Solidity Vulnerabilities and how to avoid

them (Part 2). Retrieved from https://medium.com/loom-network/how-to-secure-your-smart-contracts-6-solidity-

vulnerabilities-and-how-to-avoid-them-part-2-730db0aa4834.

[35] Arseny Reutov. 2018. Predicting Random Numbers in Ethereum Smart Contracts. Retrieved from https://blog.

positive.com/predicting-random-numbers-in-ethereum-smart-contracts-e5358c6b8620.

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-161.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-161.md
https://ethereum.stackexchange.com/questions/191/how-can-i-securely-generate-a-random-number-in-my-smart-contract
https://ethereum.stackexchange.com/questions/191/how-can-i-securely-generate-a-random-number-in-my-smart-contract
https://www.coindesk.com/rise-replay-attacks-ethereum-divide
https://www.coindesk.com/rise-replay-attacks-ethereum-divide
https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/
https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/
https://vessenes.com/tx-origin-and-ethereum-oh-my/
https://vessenes.com/tx-origin-and-ethereum-oh-my/
https://blog.comae.io/the-280m-ethereums-bug-f28e5de43513
https://blog.comae.io/the-280m-ethereums-bug-f28e5de43513
https://www.reddit.com/r/ethereum/comments/63s917/worrysome_bug_exploit_with_erc20_token/dfwmhc3/
https://www.reddit.com/r/ethereum/comments/63s917/worrysome_bug_exploit_with_erc20_token/dfwmhc3/
https://www.reddit.com/r/ethereum/comments/4ghzhv/governmentals_1100_eth_jackpot_payout_is_stuck/
https://medium.freecodecamp.org/a-hacker-stole-31m-of-ether-how-it-happened-and-what-it-means-for-ethereum-9e5dc29e33ce
https://medium.freecodecamp.org/a-hacker-stole-31m-of-ether-how-it-happened-and-what-it-means-for-ethereum-9e5dc29e33ce
https://medium.com/golem-project/how-to-find-10m-by-just-reading-blockchain-6ae9d39fcd95
https://medium.com/golem-project/how-to-find-10m-by-just-reading-blockchain-6ae9d39fcd95
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.zeppelin.solutions/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://www.reddit.com/r/ethereum/comments/5es5g4/a_state_clearing_faq/?st=iw2e1mwo&sh=fa7768&depth=1
https://www.reddit.com/r/ethereum/comments/5es5g4/a_state_clearing_faq/?st=iw2e1mwo&sh=fa7768&depth=1
http://hackingdistributed.com/2017/08/28/submarine-sends/
https://www.longhash.com/news/the-3-million-winner-of-fomo3d-is-still-playing-to-win
https://www.longhash.com/news/the-3-million-winner-of-fomo3d-is-still-playing-to-win
https://github.com/pirapira/bamboo
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10299
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10299
https://blog.cloudflare.com/bgp-leaks-and-crypto-currencies/
https://blog.cloudflare.com/bgp-leaks-and-crypto-currencies/
https://mp.weixin.qq.com/s/ia9nBhmqVEXiiQdFrjzmyg
https://mp.weixin.qq.com/s/ia9nBhmqVEXiiQdFrjzmyg
https://www.apriorit.com/dev-blog/553-eos-smart-contract-vulnerability
https://www.apriorit.com/dev-blog/553-eos-smart-contract-vulnerability
https://chaincode.chainsecurity.com/
https://github.com/sigp/solidity-security-blog
https://hackernoon.com/contractpedia-an-encyclopedia-of-40-smart-contract-platforms-4867f66da1e5
https://hackernoon.com/contractpedia-an-encyclopedia-of-40-smart-contract-platforms-4867f66da1e5
https://nvd.nist.gov/vuln/detail/CVE-2018-10299
https://nvd.nist.gov/vuln/detail/CVE-2018-10299
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://medium.com/loom-network/how-to-secure-your-smart-contracts-6-solidity-vulnerabilities-and-how-to-avoid-them-part-2-730db0aa4834
https://medium.com/loom-network/how-to-secure-your-smart-contracts-6-solidity-vulnerabilities-and-how-to-avoid-them-part-2-730db0aa4834
https://blog.positive.com/predicting-random-numbers-in-ethereum-smart-contracts-e5358c6b8620
https://blog.positive.com/predicting-random-numbers-in-ethereum-smart-contracts-e5358c6b8620

67:38 H. Chen et al.

[36] Zhenxuan Bai. 2018. Replay Attacks on Ethereum Smart Contracts. Retrieved from https://github.com/nkbai/

defcon26/tree/master/docs.

[37] OpenZeppelin. 2018. SafeMath. Retrieved from https://github.com/OpenZeppelin/openzeppelin-solidity/blob/

master/contracts/math/SafeMath.sol.

[38] Bernhard Mueller. 2018. Safety tips. Retrieved from https://github.com/ethereum/wiki/wiki/Safety#favor-pull-over-

push-for-external-calls.

[39] Ethereum community. 2018. Solidity 0.5.0 documentation. Retrieved from https://solidity.readthedocs.io/en/v0.5.0/

050-breaking-changes.html.

[40] Ethereum community. 2018. Solidity Version 0.4.22. Retrieved from https://github.com/ethereum/solidity/releases/

tag/v0.4.22.

[41] Stefan Beyer. 2018. Storage Allocation Exploits in Ethereum Smart Contracts. Retrieved from https://medium.com/

cryptronics/storage-allocation-exploits-in-ethereum-smart-contracts-16c2aa312743.

[42] Martin Derka. 2018. What We Learned from Fomo3D. Retrieved from https://medium.com/@martinderka.

[43] Zhenxuan Bai, Yuwei Zheng, Senhua Wang, and Kunzhe Chai. 2018. You may have paid more than you imagine.

Retrieved from https://www.defcon.org/html/defcon-26/dc-26-speakers.html#Bai2.

[44] The Coq development team. 2019. The Coq Proof Assistant. Retrieved from https://coq.inria.fr/.

[45] SlowMist. 2019. EOS DApp hack events. Retrieved from https://hacked.slowmist.io/en/?c=EOS%20DApp.

[46] SlowMist. 2019. EOS smart contract development security best practices. Retrieved from https://github.com/

slowmist/eos-smart-contract-security-best-practices.

[47] Alex Lielacher. 2019. ETC 51 % attack. Retrieved from https://bravenewcoin.com/insights/etc-51-attack-what-

happened-and-how-it-was-stopped.

[48] Ethereum community. 2019. Ethereum 2.0 specifications. Retrieved from https://github.com/ethereum/eth2.0-specs.

[49] ConsenSys Diligence. 2019. Ethereum Smart Contract Best Practices. Retrieved from https://consensys.github.io/

smart-contract-best-practices/.

[50] Felix Lange, Guillaume Ballet, and Antoine Toulme. 2019. Ethereum Wire Protocol (ETH). Retrieved from https:

//github.com/ethereum/devp2p/blob/master/caps/eth.md.

[51] MythX development team. 2019. Mythril. Retrieved from https://github.com/ConsenSys/mythril.

[52] Franz Volland and Florian Blum. 2019. Oracle. Retrieved from https://github.com/fravoll/solidity-patterns/blob/

master/docs/oracle.md.

[53] Yaning Zhang and Youcai Qian. 2019. RANDAO: A DAO working as RNG of Ethereum. Retrieved from https://

github.com/randao/randao.

[54] MythX development team. 2019. Smart Contract Weakness Classification and Test Cases. Retrieved from https:

//smartcontractsecurity.github.io/SWC-registry/.

[55] Vyper development team. 2019. Vyper documentation. Retrieved from https://vyper.readthedocs.io/en/latest/

?badge=latest#.

[56] Etherscan development team. 2020. Ethereum (ETH) Blockchain Explorer. Retrieved from https://etherscan.io/.

[57] OpenEthereum. 2020. Fast and feature-rich multi-network Ethereum client. Retrieved from https://github.com/

paritytech/parity-ethereum.

[58] The go-ethereum authors. 2020. Official Go implementation of the Ethereum protocol. Retrieved from https://github.

com/ethereum/go-ethereum.

[59] State of The DApps development team. 2020. State of the DApps—DApp Statistics. Retrieved from https://www.

stateofthedapps.com/stats.

[60] J. Adler, R. Berryhill, A. Veneris, Z. Poulos, N. Veira, and A. Kastania. 2018. Astraea: A decentralized blockchain

oracle. arXiv:1808.00528.

[61] E. Albert, P. Gordillo, B. Livshits, A. Rubio, and I. Sergey. 2018. EthIR: A framework for high-level analysis of

Ethereum bytecode. arXiv:1805.07208.

[62] R. Almadhoun, M. Kadadha, M. Alhemeiri, M. Alshehhi, and K. Salah. 2018. A user authentication scheme of iot

devices using blockchain-enabled fog nodes. In Proceedings of the IEEE/ACS AICCSA. IEEE, 1–8.

[63] Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. 2018. Towards verifying ethereum smart contract

bytecode in Isabelle/HOL. In Proceedings of the ACM SIGPLAN CPP. ACM, 66–77.

[64] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro, D. Enyeart, C. Ferris, G. Laventman, and

Y. Manevich. 2018. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings

of the EuroSys. 30.

[65] N. Atzei, M. Bartoletti, and T. Cimoli. 2017. A survey of attacks on ethereum smart contracts (sok). In Proceedings of

the POST. 164–186.

[66] Arati Baliga. 2017. Understanding blockchain consensus models. In Persistent, Vol. 4. 1–14.

[67] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meiklejohn, and G. Danezis. 2017. Consensus in the

age of blockchains. CoRR abs/1711.03936.

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

https://github.com/nkbai/defcon26/tree/master/docs
https://github.com/nkbai/defcon26/tree/master/docs
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://github.com/ethereum/wiki/wiki/Safety#favor-pull-over-push-for-external-calls
https://github.com/ethereum/wiki/wiki/Safety#favor-pull-over-push-for-external-calls
https://solidity.readthedocs.io/en/v0.5.0/050-breaking-changes.html
https://solidity.readthedocs.io/en/v0.5.0/050-breaking-changes.html
https://github.com/ethereum/solidity/releases/tag/v0.4.22
https://github.com/ethereum/solidity/releases/tag/v0.4.22
https://medium.com/cryptronics/storage-allocation-exploits-in-ethereum-smart-contracts-16c2aa312743
https://medium.com/cryptronics/storage-allocation-exploits-in-ethereum-smart-contracts-16c2aa312743
https://medium.com/@martinderka
https://www.defcon.org/html/defcon-26/dc-26-speakers.html#Bai2
https://coq.inria.fr/
https://hacked.slowmist.io/en/?c=EOS%20DApp
https://github.com/slowmist/eos-smart-contract-security-best-practices
https://github.com/slowmist/eos-smart-contract-security-best-practices
https://bravenewcoin.com/insights/etc-51-attack-what-happened-and-how-it-was-stopped
https://bravenewcoin.com/insights/etc-51-attack-what-happened-and-how-it-was-stopped
https://github.com/ethereum/eth2.0-specs
https://consensys.github.io/smart-contract-best-practices/
https://consensys.github.io/smart-contract-best-practices/
https://github.com/ethereum/devp2p/blob/master/caps/eth.md
https://github.com/ethereum/devp2p/blob/master/caps/eth.md
https://github.com/ConsenSys/mythril
https://github.com/fravoll/solidity-patterns/blob/master/docs/oracle.md
https://github.com/fravoll/solidity-patterns/blob/master/docs/oracle.md
https://github.com/randao/randao
https://github.com/randao/randao
https://smartcontractsecurity.github.io/SWC-registry/
https://smartcontractsecurity.github.io/SWC-registry/
https://vyper.readthedocs.io/en/latest/?badge$=$latest#
https://vyper.readthedocs.io/en/latest/?badge$=$latest#
https://etherscan.io/
https://github.com/paritytech/parity-ethereum
https://github.com/paritytech/parity-ethereum
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://www.stateofthedapps.com/stats
https://www.stateofthedapps.com/stats

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:39

[68] M. Bartoletti, S. Carta, T. Cimoli, and R. Saia. 2017. Dissecting Ponzi schemes on Ethereum: Identification, analysis,

and impact. arXiv:1703.03779.

[69] I. Bentov, R. Pass, and E. Shi. 2016. Snow white: Provably secure proofs of stake. IACR ePrint Arch. 2016 (2016), 919.

[70] K. Bhargavan, A. Lavaud, C. Fournet, A. Gollamudi, G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Pinote, N.

Swamy et al. 2016. Formal verification of smart contracts: Short paper. In Proceedings of the ACM PLAS. 91–96.

[71] F. Bobot, J. C. Filliâtre, C. Marché, and A. Paskevich. 2011. Why3: Shepherd your herd of provers. First International

Workshop on Intermediate Verification Languages, pp. 53–64.

[72] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. 2018. Verifiable delay functions. In Proceedings of the

CRYPTO. Springer, 757–788.

[73] D. Boneh, B. Bünz, and B. Fisch. 2018. A survey of two verifiable delay functions. IACR ePrint Arch. 2018 (2018), 712.

[74] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten. 2015. SoK: Research perspectives and

challenges for bitcoin and cryptocurrencies. In Proceedings of the IEEE SP. 104–121.

[75] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz, and B. Scholz. 2018. Vandal: A scalable

security analysis framework for smart contracts. arXiv:1809.03981.

[76] Vitalik Buterin. 2014. Slasher: A punitive proof-of-stake algorithm. Ethereum Blog. Retrieved from https://blog.

ethereum. org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm.

[77] Vitalik Buterin and Virgil Griffith. 2017. Casper the friendly finality gadget. arXiv preprint arXiv:1710.09437.

[78] Christian C. and Marko V.2017. Blockchain consensus protocols in the wild. CoRR abs/1707.01873.

[79] J. Chang, B. Gao, H. Xiao, J. Sun, and Z. Yang. 2018. sCompile: Critical path identification and analysis for smart

contracts. arXiv:1808.00624.

[80] D. Chaum. 1982. Blind signatures for untraceable payments. In Proceedings of the CRYPTO.199–203.

[81] H. Chen, J. Cho, and S. Xu. 2018. Quantifying the security effectiveness of firewalls and DMZs. In Proceedings of the

HoTSoS. 9:1–9:11.

[82] T. Chen, X. Li, Y. Wang, J. Chen, Z. Li, X. Luo, M. Au, and X. Zhang. 2017. An adaptive gas cost mechanism for

ethereum to defend against under-priced DoS attacks. In Proceedings of the ISPEC. Springer, 3–24.

[83] Jin-Hee Cho, Shouhuai Xu, Patrick M. Hurley, Matthew Mackay, Trevor Benjamin, and Mark Beaumont. 2019.

STRAM: Measuring the trustworthiness of computer-based systems. ACM Comput. Surv. 51, 6 (2019), 128:1–128:47.

[84] Michael Coblenz. 2017. Obsidian: A safer blockchain programming language. In Proceedings of the ICSE. 97–99.

[85] M. Conti, E. Kumar, C. Lal, and S. Ruj. 2018. A survey on security and privacy issues of bitcoin. IEEE Communications

Surveys Tutorials 20, 4 (2018), 3416–3452.

[86] T. Cook, A. Latham, and J. Lee. 2017. Dappguard: Active monitoring and defense for solidity smart contracts. Re-

trieved from https://pdfs.semanticscholar.org/7438/ffd4c3b45a6d239815df377a453adfa890fa.pdf.

[87] P. Cousot and R. Cousot. 1977. Abstract interpretation: A unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In Proceedings of the PoPL. 238–252.

[88] P. Daian, I. Eyal, A. Juels, and E. Sirer. 2017. Piecework: Generalized outsourcing control for proofs of work. In

Proceedings of the FC. 182–190.

[89] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, and A. Juels. 2019. Flash Boys 2.0: Frontrun-

ning, transaction reordering, and consensus instability in decentralized exchanges. arXiv:1904.05234.

[90] B. David, P. Gaži, A. Kiayias, and A. Russell. 2018. Ouroboros praos: An adaptively-secure, semi-synchronous proof-

of-stake blockchain. In Proceedings of the EUROCRYPT. Springer, 66–98.

[91] E. Deirmentzoglou, G. Papakyriakopoulos, and C. Patsakis. 2019. A survey on long-range attacks for proof of stake

protocols. IEEE Access 7 (2019), 28712–28725.

[92] K. Delmolino, M. Arnett, A. Kosba, A. Miller, and E. Shi. 2016. Step by step towards creating a safe smart contract:

Lessons and insights from a cryptocurrency lab. In Proceedings of the FinancialCRYPTO. 79–94.

[93] G. Destefanis, M. Marchesi, M. Ortu, R. Tonelli, A. Bracciali, and R. Hierons. 2018. Smart contracts vulnerabilities:

A call for blockchain software engineering? In Proceedings of the IEEE IWBOSE. 19–25.

[94] Monika Di Angelo and Gernot Salzer. 2019. A survey of tools for analyzing ethereum smart contracts. In Proceedings

of the DAPPCON.

[95] Cynthia Dwork and Moni Naor. 1992. Pricing via processing or combatting junk mail. In Proceedings of the CRYPTO.

139–147.

[96] Paul Dworzanski. A note on committee random number generation, commit-reveal, and last-revealer attacks. Re-

trieved from http://paul.oemm.org/commit_reveal_subcommittees.pdf.

[97] P. Ekparinya, V. Gramoli, and G. Jourjon. 2018. Impact of man-in-the-middle attacks on ethereum. In Proceedings of

the IEEE SRDS. 11–20.

[98] Joshua Ellul and Gordon J Pace. 2018. Runtime verification of ethereum smart contracts. In Proceedings of the IEEE

EDCC. 158–163.

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

https://blog. ignorespaces ethereum. ignorespaces org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm
https://blog. ignorespaces ethereum. ignorespaces org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm
https://pdfs.semanticscholar.org/7438/ffd4c3b45a6d239815df377a453adfa890fa.pdf
http://paul.oemm.org/commit_reveal_subcommittees.pdf

67:40 H. Chen et al.

[99] Ittay Eyal and Emin Gün Sirer. 2018. Majority is not enough: Bitcoin mining is vulnerable. Commun. ACM 61, 7

(2018), 95–102.

[100] M. Fischer, N. Lynch, and M. Paterson. 1985. Impossibility of distributed consensus with one faulty process. J. ACM

32, 2, 374–382.

[101] P. Gaži, A. Kiayias, and A. Russell. 2018. Stake-bleeding attacks on proof-of-stake blockchains. In Proceedings of the

CVCBT. 85–92.

[102] A. Gervais, G. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun. 2016. On the security and performance

of proof of work blockchains. In Proceedings of the ACM CCS. 3–16.

[103] Vincent Gramoli. 2020. From blockchain consensus back to byzantine consensus. Future Gen. Comput. Syst. 107

(2020), 760–769.

[104] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smaragdakis. 2018. Madmax: Surviving out-of-gas con-

ditions in ethereum smart contracts. In Proceedings of the OOPSLA. 116.

[105] I. Grishchenko, M. Maffei, and C. Schneidewind. 2018. EtherTrust: Sound Static Analysis of Ethereum Bytecode. Tech-

nical Report. Retrieved from https://pdfs.semanticscholar.org/26c2/b7e7479336d44891aadda6b5eaae2ca2ee91.pdf.

[106] I. Grishchenko, M. Maffei, and C. Schneidewind. 2018. Foundations and tools for the static analysis of ethereum

smart contracts. In Proceedings of the ICCAV. Springer, 51–78.

[107] I. Grishchenko, M. Maffei, and C. Schneidewind. 2018. A semantic framework for the security analysis of ethereum

smart contracts. In Proceedings of the POST. Springer, 243–269.

[108] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky, M. Sagiv, and Y. Zohar. 2017. Online detection

of effectively callback free objects with applications to smart contracts. In Proceedings of the PoPL. 48.

[109] C. Grunspan and R. Pérez-Marco. 2019. Selfish mining and Dyck words in Bitcoin and Ethereum networks.

arXiv:1904.07675.

[110] Cyril Grunspan and Ricardo Pérez-Marco. 2019. Selfish mining in ethereum. arXiv:1904.13330.

[111] Y. Han, W. Lu, and S. Xu. 2014. Characterizing the power of moving target defense via cyber epidemic dynamics. In

Proceedings of the HotSoS’14, Vol. 10. 1–12.

[112] D. Harz and W. Knottenbelt. 2018. Towards safer smart contracts: A survey of languages and verification methods.

arXiv:1809.09805.

[113] H. Hasan and K. Salah. 2018. Proof of delivery of digital assets using blockchain and smart contracts. IEEE Access 6,

65439–65448.

[114] H. Hasan and K. Salah. 2019. Combating deepfake videos using blockchain and smart contracts. IEEE Access 7,

41596–41606.

[115] S. Henningsen, D. Teunis, M. Florian, and B. Scheuermann. 2019. Eclipsing ethereum peers with false friends. In

Proceedings of the EuroS&P. 300–309.

[116] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth, B. Moore, D. Park, Y. Zhang, and A. Stefanescu.

2018. KEVM: A complete formal semantics of the ethereum virtual machine. In Proceedings of the CSF. 204–217.

[117] Yoichi Hirai. 2017. Defining the ethereum virtual machine for interactive theorem provers. In Proceedings of the

FinancialCRYPTO. 520–535.

[118] Y. Huang, Y. Bian, R. Li, J. Zhao, and P. Shi. 2019. Smart contract security: A software lifecycle perspective. IEEE

Access 7, 150184–150202.

[119] B. Jiang, Y. Liu, and W. Chan. 2018. Contractfuzzer: Fuzzing smart contracts for vulnerability detection. In Proceedings

of the ASE. 259–269.

[120] A. Judmayer, N. Stifter, A. Zamyatin, I. Tsabary, I. Eyal, P. Gazi, S. Meiklejohn, and E. Weippl. 2019. Pay-To-Win:

Incentive Attacks on Proof-of-Work Cryptocurrencies. Technical Report. Cryptology ePrint Archive, Report 2019/775.

[121] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. Zeus: Analyzing safety of smart contracts. In

Proceedings of theNDSS.

[122] M. Khan and K. Salah. 2018. IoT security: Review, blockchain solutions, and open challenges. Future Gen. Comput.

Syst. 82, 395–411.

[123] A. Kiayias, A. Russell, B. David, and R. Oliynykov. 2017. Ouroboros: A provably secure proof-of-stake blockchain

protocol. In Proceedings of the CRYPTO. 357–388.

[124] L. Kiffer, D. Levin, and A. Mislove. 2017. Stick a fork in it: Analyzing the Ethereum network partition. In Proceedings

of the ACM HotNets. 94–100.

[125] Simon Kim. 2017. Measuring Ethereum’s Peer-to-peer Network. Ph.D. Dissertation.

[126] S. Kim, Z. Ma, S. Murali, J. Mason, A. Miller, and M. Bailey. 2018. Measuring ethereum network peers. In Proceedings

of the ACM IMC. 91–104.

[127] James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (1976), 385–394.

[128] Sunny King and Scott Nadal. 2012. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. Self-published Paper.

Retrieved from https://www.chainwhy.com/upload/default/20180619/126a057fef926dc286accb372da46955.pdf.

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

https://pdfs.semanticscholar.org/26c2/b7e7479336d44891aadda6b5eaae2ca2ee91.pdf
https://www.chainwhy.com/upload/default/20180619/126a057fef926dc286accb372da46955.pdf

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:41

[129] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. 2016. Hawk: The blockchain model of cryptography and

privacy-preserving smart contracts. In Proceedings of the IEEE SP. 839–858.

[130] J. Krupp and C. Rossow. 2018. teether: Gnawing at ethereum to automatically exploit smart contracts. In Proceedings

of the UsenixSecurity. 1317–1333.

[131] Ao Li and Fan Long. 2018. Detecting standard violation errors in smart contracts. arXiv:1812.07702.

[132] W. Li, S. Andreina, J. Bohli, and G. Karame. 2017. Securing proof-of-stake blockchain protocols. In Proceedings of the

DPM CBT. 297–315.

[133] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen. 2017. A survey on the security of blockchain systems. Future Gen.

Comput. Syst. 107 (2020), 841–853.

[134] X. Li, P. Parker, and S. Xu. 2011. A stochastic model for quantitative security analyses of networked systems. IEEE

TDSC 8, 1, 28–43.

[135] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Z. Chen, S. Wang, and J. Wang. 2018. SySeVR: A framework for using deep

learning to detect software vulnerabilities. CoRR abs/1807.06756.

[136] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong. 2018. VulDeePecker: A deep learning-based

system for vulnerability detection. In Proceedings of the NDSS.

[137] Z. Lin, W. Lu, and S. Xu. 2019. Unified preventive and reactive cyber defense dynamics is still globally convergent.

IEEE/ACM Trans. Netw. 27, 3 (2019), 1098–1111.

[138] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe. 2018. ReGuard: Finding reentrancy bugs in smart contracts.

In Proceedings of the ICSE. 65–68.

[139] L. Luu, D. Chu, H. Olickel, P. Saxena, and A. Hobor. 2016. Making smart contracts smarter. In Proceedings of the

ACM CCS. 254–269.

[140] L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena. 2015. Demystifying incentives in the consensus computer. In Proceed-

ings of the ACM CCS. 706–719.

[141] L. Luu, Y. Velner, J. Teutsch, and P. Saxena. 2017. Smartpool: Practical decentralized pooled mining. In Proceedings

of the UsenixSecurity. 1409–1426.

[142] Y. Marcus, E. Heilman, and S. Goldberg. 2018. Low-resource eclipse attacks on Ethereum’s peer-to-peer network. Re-

trieved from http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/Enseignements/ProjetsCrypto/Ethereum/236.pdf.

[143] A. Mavridou and A. Laszka. 2017. Designing secure ethereum smart contracts: A finite state machine based approach.

arXiv:1711.09327.

[144] Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. 2018. Smart contracts for bribing miners. In Proceedings

of the FinancialCRYPTO. 3–18.

[145] Silvio Micali. 2016. Algorand: The efficient and democratic ledger. arXiv preprint arXiv:1607.01341 (2016).

[146] A. Miller, A. Kosba, J. Katz, and E. Shi. 2015. Nonoutsourceable scratch-off puzzles to discourage bitcoin mining

coalitions. In Proceedings of the ACM CCS. 680–691.

[147] J. Mireles, E. Ficke, J. Cho, P. Hurley, and S. Xu. 2019. Metrics towards measuring cyber agility. IEEE TIFS 14, 12

(2019), 3217–3232.

[148] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Retrieved from https://bitcoin.org/bitcoin.

pdf.

[149] Ryuya Nakamura, Takayuki Jimba, and Dominik Harz. 2019. Refinement and verification of CBC casper. Networks

2 (2019), 4.

[150] C. Natoli and V. Gramoli. 2017. The balance attack or why forkable blockchains are ill-suited for consortium. In

Proceedings of the IEEE/IFIP DSN. 579–590.

[151] D. Nicol, W. Sanders, and K. Trivedi. 2004. Model-based evaluation: From dependability to security. IEEE TDSC 1, 1

(2004), 48–65.

[152] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor. 2018. Finding the greedy, prodigal, and suicidal contracts

at scale. In Proceedings of the ACSAC. 653–663.

[153] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL: A Proof Assistant for Higher-order

Logic. Vol. 2283. Springer.

[154] Jianyu Niu and Chen Feng. 2019. Selfish mining in Ethereum. arXiv:1901.04620.

[155] S. Noel and S. Jajodia. 2017. A Suite of Metrics for Network Attack Graph Analytics. Springer International Publishing,

Cham, 141–176.

[156] Russell O’Connor. 2017. Simplicity: A new language for blockchains. In Proceedings of the PLAS. 107–120.

[157] D. Park, Y. Zhang, M. Saxena, P. Daian, and G. Roşu. 2018. A formal verification tool for Ethereum VM bytecode. In

Proceedings of the of ACM ESEC/FSE. ACM, 912–915.

[158] M. Pendleton, R. Garcia-Lebron, J. Cho, and S. Xu. 2016. A survey on systems security metrics. ACM Comput. Surv.

49, 4, 62:1–62:35.

[159] L. Quan, L. Wu, and H. Wang. 2019. EVulHunter: Detecting fake transfer vulnerabilities for EOSIO’s smart contracts

at webassembly-level. arXiv:1906.10362.

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/Enseignements/ProjetsCrypto/Ethereum/236.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

67:42 H. Chen et al.

[160] A. Ramos, M. Lazar, R. H. Filho, and J. J. P. C. Rodrigues. 2017. Model-based quantitative network security metrics:

A survey. IEEE Commun. Surveys Tutor. 19, 4 (2017), 2704–2734.

[161] F. Ritz and A. Zugenmaier. 2018. The impact of uncle rewards on selfish mining in ethereum. In Proceedings of the

IEEE EuroS&P. 50–57.

[162] M. Rodler, W. Li, G. Karame, and L. Davi. 2018. Sereum: Protecting existing smart contracts against re-entrancy

attacks. arXiv:1812.05934.

[163] G. Ros,u and T. S, erbănută. 2010. An overview of the K semantic framework. J. Logic Algebra. Program. 79, 6 (2010),

397–434.

[164] M. Saad, J. Spaulding, L. Njilla, C. Kamhoua, S. Shetty, D. Nyang, and A. Mohaisen. 2019. Exploring the attack surface

of blockchain: A systematic overview. arXiv:1904.03487.

[165] K. Salah, M. Rehman, N. Nizamuddin, and A. Fuqaha. 2019. Blockchain for AI: Review and open research challenges.

IEEE Access 7 (2019), 10127–10149.

[166] Jerome H. Saltzer and Michael D. Schroeder. 1975. The protection of information in computer systems. Proc. IEEE

63, 9 (1975), 1278–1308.

[167] F. Schrans, S. Eisenbach, and S. Drossopoulou. 2018. Writing safe smart contracts in Flint. In Proceedings of the ACM

on Programming Languages. ACM, 218–219.

[168] Robert W. Sebesta. 2012. Concepts of Programming Languages. Pearson, Boston.

[169] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. 2018. Scilla: A smart contract intermediate-level language.

arXiv:1801.00687.

[170] Yonatan Sompolinsky and Aviv Zohar. 2015. Secure high-rate transaction processing in bitcoin. In Proceedings of the

FinancialCRYPTO. 507–527.

[171] Matt Suiche. 2017. Porosity: A decompiler for blockchain-based smart contracts bytecode. In Proceedings of the DEF

CON. 11.

[172] A. Suliman, Z. Husain, M. Abououf, M. Alblooshi, and K. Salah. 2018. Monetization of IoT data using smart contracts.

IET Netw. 8, 1 (2018), 32–37.

[173] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Lavaud, S. Forest, K. Bhargavan, C. Fournet, P. Strub, M. Kohlweiss

et al. 2016. Dependent types and multi-monadic effects in F. In ACM SIGPLAN Notices, Vol. 51. ACM, 256–270.

[174] A. Tann, X. Han, S. Gupta, and Y. Ong. 2018. Towards safer smart contracts: A sequence learning approach to

detecting vulnerabilities. arXiv:1811.06632.

[175] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and Y. Alexandrov. 2018. Smartcheck:

Static analysis of ethereum smart contracts. In Proceedings of the IEEE/ACM WETSEB. 9–16.

[176] P. Tsankov, A. Dan, D. Cohen, A. Gervais, F. Buenzli, and M. Vechev. 2018. Securify: Practical security analysis of

smart contracts. arXiv:1806.01143.

[177] F. Tschorsch and B. Scheuermann. 2016. Bitcoin and beyond: A technical survey on decentralized digital currencies.

IEEE Commun. Surveys Tutor. 18, 3 (2016), 2084–2123.

[178] Marko Vukolić. 2017. Rethinking permissioned blockchains. In Proceedings of the ACM BCC. 3–7.

[179] Wenbo Wang, Dinh Thai Hoang, Peizhao Hu, Zehui Xiong, Dusit Niyato, Ping Wang, Yonggang Wen, and Dong

In Kim. 2019. A survey on consensus mechanisms and mining strategy management in blockchain networks. IEEE

Access 7 (2019), 22328–22370.

[180] X. Wang, X. Zha, G. Yu, W. Ni, R. Liu, Y. Guo, X. Niu, and K. Zheng. 2018. Attack and defence of ethereum remote

apis. In Proceedings of the GC. IEEE, 1–6.

[181] Benjamin Wesolowski. 2019. Efficient verifiable delay functions. In Proceedings of the EUROCRYPT. 379–407.

[182] F. Winzer, B. Herd, and S. Faust. 2019. Temporary censorship attacks in the presence of rational miners. In Proceedings

of the IEEE EuroS&PW. 357–366.

[183] M. Wohrer and U. Zdun. 2018. Smart contracts: Security patterns in the ethereum ecosystem and solidity. In Pro-

ceedings of the IEEE IWBOSE. 2–8.

[184] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper

151 (2014), 1–32.

[185] Karl Wüst and Arthur Gervais. 2016. Ethereum Eclipse Attacks. Technical Report. ETH Zurich.

[186] Y. Xiao, N. Zhang, W. Lou, and Y. Hou. 2019. A survey of distributed consensus protocols for blockchain networks.

arxiv:1904.04098

[187] M. Xu, G. Da, and S. Xu. 2015. Cyber epidemic models with dependences. Internet Math. 11, 1 (2015), 62–92.

[188] Shouhuai Xu. 2014. Cybersecurity dynamics. In Proceedings of the HotSoS. 14:1–14:2.

[189] Shouhuai Xu. 2014. Emergent behavior in cybersecurity. In Proceedings of the HotSoS. 13:1–13:2.

[190] Shouhuai Xu. 2019. Cybersecurity dynamics: A foundation for the science of cybersecurity. In Proactive and Dynamic

Network Defense, Zhuo Lu and Cliff Wang (Eds.). Vol. 74. Springer International Publishing, Cham, 1–31.

[191] Shouhuai Xu, Wenlian Lu, and Li Xu. 2012. Push- and pull-based epidemic spreading in arbitrary networks: Thresh-

olds and deeper insights. ACM Trans. Auton. Adapt. Syst. 7, 3 (2012), 32:1–32:26.

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses 67:43

[192] K. Yamashita, Y. Nomura, E. Zhou, B. Pi, and S. Jun. 2019. Potential risks of hyperledger fabric smart contracts. In

Proceedings of the IEEE IWBOSE. 1–10.

[193] V. Zamfir, N. Rush, A. Asgaonkar, and G. Piliouras. 2018. Introducing the “Minimal CBC Casper” Family of Con-

sensus Protocols. Retrieved from https://github.com/cbc-casper/cbc-casper-paper/blob/master/cbc-casper-paper-

draft.pdf.

[194] G. Zeng, S. Yiu, J. Zhang, H. Kuzuno, and M. Au. 2017. A nonoutsourceable puzzle under GHOST rule. In Proceedings

of the IEEE PST. 35–358.

[195] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi. 2016. Town crier: An authenticated data feed for smart

contracts. In Proceedings of the ACM CCS. 270–282.

[196] R. Zhang, R. Xue, and L. Liu. 2019. Security and privacy on blockchain. CoRR abs/1903.07602.

[197] R. Zheng, W. Lu, and S. Xu. 2015. Active cyber defense dynamics exhibiting rich phenomena. In Proceedings of the

HotSoS. 2:1–2:12.

[198] R. Zheng, W. Lu, and S. Xu. 2018. Preventive and reactive cyber defense dynamics is globally stable. IEEE Trans.

Netw. Sci. Eng. 5, 2 (2018), 156–170.

[199] Y. Zhou, D. Kumar, S. Bakshi, J. Mason, A. Miller, and M. Bailey. 2018. Erays: Reverse engineering ethereum’s opaque

smart contracts. In Proceedings of the USENIXSecurity.

[200] L. Zhu, B. Zheng, M. Shen, S. Yu, F. Gao, H. Li, K. Shi, and K. Gai. 2018. Research on the security of blockchain data:

A survey. CoRR abs/1812.02009.

Received August 2019; revised February 2020; accepted March 2020

ACM Computing Surveys, Vol. 53, No. 3, Article 67. Publication date: June 2020.

https://github.com/cbc-casper/cbc-casper-paper/blob/master/cbc-casper-paper-draft.pdf
https://github.com/cbc-casper/cbc-casper-paper/blob/master/cbc-casper-paper-draft.pdf

