
APIN: Automatic Attack Path Identification in
Computer Networks

Eric Ficke and Shouhuai Xu
Department of Computer Science, University of Texas at San Antonio

Abstract—Identifying the scope of a network attack can be
difficult with limited information about the nature of the attack.
Even more difficult is the automation of this process. Because of
this, it is important to investigate new methods for mapping and
quantifying the threat posed by an attack, in order to prioritize
actions during incident response. To this end we propose a
framework for automatic attack path identification in computer
networks (APIN) by leveraging observable malicious behaviors to
quantify the threat score of a set of attacks. Using two academic
datasets, experimental results show that APIN is able to quickly
reconstruct paths that offer meaningful insight into the nature
of multi-step threats on the network, given only reasonable
restrictions on network size and structure. These insights would
not be possible with only existing tools, such as IDSs, and human
analysts would require significant time and expertise to obtain
the same findings without APIN’s guidance.

Index Terms—Attack Path, Threat Score, Alert Prioritization,
Intrusion Detection, Cyber Attack, Incident Response

I. INTRODUCTION

In cyber incident response, the defender needs to identify the
location and extent of damage that an attacker has been able to
inflict. Since most, if not all, cyber attacks are conducted via
multiple steps [1], [2], [3], the attack paths that have been
exploited by attackers must be identified quickly and with
high certainty. Additionally, it is important that the information
provided to human defenders has clear cyber security meaning
and, if possible, suggests a mitigation approach [4], [5]. For
these reasons, this paper aims to identify all potential attack
paths with respect to a known or suspected target and rank
the most significant attacks based on the magnitude of threat
to the network and the causal relationship between attacks.

A. Our Contributions

In this paper we make the following contributions. First,
we formulate the problem of cyber attack incident response
via the identification of attack paths, which facilitates the
automation of incident response. To the best of our knowledge,
we are the first to formulate the problem from this perspective.
Second, in order to rank the significance of attack paths, we
introduce a framework which quantifies the threat score of an
attack path. Named for its purpose in automatic Attack Path
Identification in computer Networks, APIN also introduces the
work of quantifying the notion of a threat score, as distin-
guished from a vulnerability score, although the two terms
have been used interchangeably in some of the literature. The
framework utilizes output from existing network monitors such
as intrusion detection systems (IDSs) and incorporates existing
database software for efficiency. Our approach achieves high

explainability, resistance to some attacks, and can be auto-
mated. Third, in order to demonstrate the effectiveness of the
framework, we conduct case studies on two widely-accepted
datasets. Experimental results demonstrate our model’s ability
to identify paths quickly and accurately, given reasonable
restrictions on network size and architecture.

B. Related Works

The problem of identifying attack paths is closely related to
the formulation of attack narratives [6] with respect to some
cyber attack models (e.g., cyber kill chains [2], [3]) and the
formulation of attack stories [7]. Contrasting these studies, we
aim to achieve automated formulation and reconstruction of
attacks that are described in diverse collections of data.

There have been studies on reconstructing Distributed
Denial-of-Service (DDoS) attacks (via probabilistic packet
marking) [8], malware infections on hosts and command-
and-control [9], [10], [11], and network attack paths (via
similarities) [12]. Contrasting these studies, we seek to identify
and rank attack paths, since real networks naturally have many
discrete paths of various significance.

Some other works have taken a vulnerability-based ap-
proach to analyzing attacks [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25]. However, vulnerability
information is often incomplete or out of date, since new
vulnerabilities are found and published daily [26]. Hoping to
avoid this limitation, we instead use a threat-based approach,
which may be better able to identify previously-unseen threats
[27]. The identification of attack paths falls into the broader
context of cybersecurity data analytics [28], [29], [30], [31],
[32], [33] of the Cybersecurity Dynamics framework [34],
[35], [36], [37], [38], [39], [40].

II. FRAMEWORK

We start with a description of the terminology used in the
paper, given in Table I.

A. Problem Statement

We model a computer network as a graph G = (V,E),
where V is the set of vertices or nodes (representing IP
addresses) E is the set of arcs or directed edges (represent-
ing suspicious communications) between nodes. Each edge
e ∈ E consists of a unique tuple (src, dst, time, SID), which
identifies a suspicious communication between a source IP
address (src) and a destination IP address (dst) at a certain
time (time) and indicates the type of suspicious activity

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 15,2021 at 20:10:02 UTC from IEEE Xplore. Restrictions apply.

Term Meaning / Usage
Attacker A computer which behaves maliciously. This does not

imply ownership of the system, merely the ability to make
it perform some action.

Victim A computer which has been targeted by an attack. This
does not imply compromise of the computer.

Attack Path Series of computers on a network which begin at some
attacker (the origin) and terminate at some victim (the
target).

Path Link A tuple of computers in a network (i.e., an attacker and
a victim) which belong to some attack path and which
are connected by at least one edge directed to the victim.

ITS Independent Threat Score corresponding to a specific
computer within the network.

CTS Composite Threat Score corresponding to an attack path
and denotes the combined threat against every system in
the path.

Origin Node from which an attacker began executing its strategy
(or where this was first observed)

Target Node which is presumed to be the objective of an
attacker’s mission. If specified, this node is always at
the end of an attack path.

TABLE I: Terms used throughout the paper.

via a signature identifier (SID). SIDs may be provided by
intrusion detection systems or other defense tools.

Given a set of security events (e.g., IDS alerts), where
an event is represented as an edge, these security events
can formulate a graph G = (V,E) as follows: vertices are
extracted from each event such that both the src and dst
represent vertices in the graph. The edge’s SID is added to the
src vertex’s list annotation of SIDsout and the corresponding
dst vertex’s list annotation of SIDsin. The dst address is
added to the src vertex’s list annotation of neighborsout,
which contains the set of neighbors against which it has
initiated attacks. Likewise, the src vertex is added to the dst
vertex’s corresponding list annotation of neighborsin, which
contains the set of neighbors that have initiated attacks against
it. Edges are naturally converted directly from alerts because
each alert indicates an attack waged from src againt dst.

The research problem is to extract and rank the observed
attack paths within a network based on the perceived threat of
each path. The ranking of these paths should be generalizeable
so that it can be used in any network without manual tagging
and training, and robust so that attackers cannot easily force
paths to be ranked in the wrong order (i.e., higher ranked
attack paths are attacked more heavily).

B. Solution Framework

Figure 1 highlights the proposed framework, known as
APIN, per the title of this work. The framework has 3 stages.
The first stage uses the alerts provided to construct the graph
and quantify the independent threat score (ITS) of each node.
If no suspected target is provided, this stage will also select
some potential targets or origins based on the ITS. The second
stage is to identify possible attack paths with respect to a given
node. This stage uses the network communication data from
the aforementioned G = (V,E). The third stage aggregates
the ITS scores in each path to obtain the composite threat

score (CTS). These paths are ranked according to CTS, so the
paths with the most significant threat can be handled first.

OutputAPINInputs

ITSAlert List

Guided Path
IdentificationSuspected

Target

Automatic
Path

Identification

CTS
Ranked
Attack
Paths

Fig. 1: An overview of the APIN framework. ITS refers to the
calculation of the independent threat score. CTS refers to the
calculation of composite threat score.

1) Independent Threat Score: In this stage, APIN parses
the security events and builds a database each for nodes
and edges. Nodes are defined by the IP addresses named as
the src or dst of the events. They are annotated with the
alert type (i.e., SID) and quantity with which they share
an edge, either outbound or inbound, for the src and dst,
respectively. Within the database, nodes are indexed according
to address, ITS, and number of neighbors in and out. Edges
are defined by the tuple described in Section II-A, which is a
representation of the corresponding security event. Within the
database, edges are indexed according to src, dst and time,
for each combination of the 3 terms. The combination of all
three is indexed twice, to facilitate both a chronological and
a reverse-chronological query, as necessary. The ‘nodes’ and
‘edges’ databases comprise G = (V,E).

ITS is the first building block we use to analyze attack
paths. Intuitively, it measures the scale and cost of attacks
against a node. In this case, we interpret cost as the difficulty
of generating and launching diverse attacks. This value must be
calculated for each computer in an attack path. The parameters
used in the ITS formula are chosen as follows:

• Inbound alert diversity (Din). This captures the idea that
adaptive attacks by skilled attackers will result in various
alarms being triggered. It is calculated as the number of
inbound alert types, or 1, if there are no inbound alerts.

• Outbound alert diversity (Dout). As with inbound alert
diversity, this captures the idea of an adaptive attacker,
but is distinguished in the case of server-side attacks,
data exfiltration and similar alerts. It is calculated as the
number of outbound alert types, or 1, if there are no
outbound alerts.

• Inbound alert scale by type (Sin). This provides a generic
and intuitive measurement of the threat against a node.
It is calculated as the geometric mean of the number of
inbound alerts of each type present, or 1, if there are
no inbound alerts. Alert type is defined by its signature
identifier (SID).

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 15,2021 at 20:10:02 UTC from IEEE Xplore. Restrictions apply.

Our initial attempt to formulate ITS also used the metric of
outbound alert scale, but this was found to produce heavily
skewed results with the highest values held exclusively by
nodes which had conducted network scans (since these pro-
duce an inordinate amount of alerts relative to other attack
types). This not only puts the focus on nodes with relatively
routine activity (even though scans are indeed suspicious), but
enables attackers to easily push nodes in their control to the
top of the ITS ranking. Because of these observations, we
removed outbound alert scale from the formula, making it
resistant to the “noisy network scan diversion.” For the same
reason, we choose to define Sin using the geometric mean
of the number of inbound alerts of each type present, rather
than the arithmetic mean. This is because some attacks are
cheaper than others (in terms of configuration complexity, time
of execution, etc.), so attackers could more easily manipulate
the arithmetic mean – inflating the threat score – by producing
more cheap attacks (such as scans). Given this discussion, we
define ITS as follows:

Definition 1 (ITS): The ITS of a node is the weighted
geometric mean of the node’s inbound alert diversity, outbound
alert diversity, and inbound alert scale by type. Specifically,

ITS(x) = W

√
Dw1

in ·D
w2
out · S

w3
in , (1)

where W = w1 + w2 + w3 and each weight is configurable.
For our case studies, we used the default values of 1 for

each weight. If no reference node (i.e., suspected target) is
provided, the 10 nodes with the highest ITS are selected and
used in turn as reference nodes, as both target and origin (i.e.,
path identification is run 20 times). This means that the use
of a reference node can significantly improve the runtime of
APIN, but that the reliability of the corresponding results are
wholly dependent on the reliability of the reference node.

2) Identifying Attack Paths: In principle, attack paths can
be reconstructed with respect to a time-based or node-based
approach. In the time-based approach, the idea is to parse each
arc in reverse-chronological order and add newly identified
nodes to the DAG as appropriate. This process is repeated
for each known or suspected node in V . In the node-based
approach, arcs are indexed by their source and destination,
then each victim node’s adjacency list is parsed significantly
faster than in the time-based approach. Indexing needs only
to occur once for each arc.

APIN also includes a configurable blacklist, in case some
nodes (e.g., honeypots) need not be examined. This is also
useful for nodes which have a high cardinality of neighbors
(such as routers and broadcast addresses), which can cause
an exponential increase in the runtime of the algorithm. This
effect imitates that of attempting to identify all possible attack
paths in a fully-connected graph, as discussed below. Nodes
excluded for this reason should be manually inspected.

Because of its apparent runtime advantage over the time-
based approach, we only provide pseudocode for the node-
based approach; because the origin-centered algorithm follows
the same logical flow in reverse, we only give the target-
centered algorithm, namely Algorithm 1. In the pseudocode,

Algorithm 1 Target-Centered APIN with Node Indexing
Input: Target Address, G = (V,E,Z), Blacklist
Output: Attack Paths = ([V])

1: root← NewTree
2: root.time← TIME MAX
3: New Leaves← {root}
4: while New Leaves has nodes do
5: Candidates← New Leaves
6: New Leaves← ∅
7: for candidate ∈ Candidates do
8: Query edges with dst = candidate and time <

candidate.time
9: Sort Query Result in reverse-chronological order

10: for edge ∈ Query Result do
11: if edge.src 6∈ Blacklist ∪ candidate.ancestors ∪

candidate.children then
12: New Leaf ← {src = edge.src, time =

edge.time}
13: Add New Leaf to candidate.children
14: Add New Leaf to New Leaves
15: end if
16: end for
17: end for
18: end while
19: Paths← ∅
20: for leaf ∈ root.leaves do
21: path← leaf.ancestors
22: Add path to Paths
23: end for
24: return Paths

we construct a tree of all the nodes which connect to the
target, noting the time which they do so. This preserves the
temporal dependency between two attacks (i.e., a secure node
cannot be used to conduct an attack before that node itself has
been attacked). Once the tree has been constructed, the paths
extending down to each leaf are the possible paths the attacker
could have taken, with the leaves being the corresponding
origin.

The time complexity of the algorithm is heavily dependent
on the connectedness of the graph. The worst-case complexity
is for a graph that is fully-connected such that each node
has |V | connections to each other node, with connections
interleaved specially to ensure that, at each branch of the
tree, every node has an edge to every other node. In this
case, the complexity is O(|V |3). Alternatively, the worst case
complexity as defined by the number of edges is O(|E|2).
That is, the worst-case complexity is min{O(|V |3),O(|E|2)},
depending on the density of graph G = (V,E). For sparsely
connected graphs, it is likely that many nodes will never
enter a given tree, resulting in a significantly better expected
runtime. For a reasonably secure network, we expect attacks
to be sparse, or at least concentrated around certain attackers
or victims.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 15,2021 at 20:10:02 UTC from IEEE Xplore. Restrictions apply.

3) Composite Threat Score: We introduce the concept of
CTS to quantify the threat posed against a given path as a
whole. The purpose of this definition is to gain insight into the
attacker’s intent and/or objective. In part, this can be inferred
based on the amount of resources directed at individual
computers in a path (given by the ITS). Additionally, the length
of a path may be a partial indicator of how well-defined the
attacker’s objective may be (e.g., if their first target is their
only target, perhaps the attacker has some inside knowledge
about the location of data they seek to compromise). Based
on these principles, we define CTS as follows:

Definition 2 (CTS): The CTS of an attack path is the sum
of the ITS of all nodes in the given attack path.

Threat score is conceptualized independently of path iden-
tification in Figure 2. Specifically, this figure highlights the
fact that even though ITS may be calculated for each node
individually, CTS requires both the path structure and the ITS
of each node in that path.

The CTS calculation is designed to rank the paths containing
those computers most targeted by an attacker, even if not all
attacks incident to nodes in that path follow the path precisely.
For example, an attacker may conduct some attacks from a
variety of external nodes (e.g., using spoofing or a botnet). In
this case, it is more important to model the threat against the
target than to precisely determine which attacker realized the
compromise of that node. Because of this, the measurement of
ITS for nodes in a path may be impacted by attacks from/to
computers not in the path.

Composite
Threat Score

Independent
Threat Score

Independent
Threat Score

Independent
Threat Score

Alert List Alert List Alert List

Node A Node B Node C
Attack Path

Fig. 2: Threat Score Calculation

III. EVALUATION WITH REAL DATA

We evaluate our framework using two research-oriented
network traffic datasets, DARPA99 [41] and CSECICIDS2018
[42]. The former, despite major criticism and age, remains one
of the most-referenced datasets for IDS evaluation today, while
the latter offers a significantly improved attack landscape,
volume of data, and more robust data description.

A. Configuration

Because the attack paths are derived from the output of
an existing IDS (in this case, Suricata 4.0 [43]), it is im-
portant that the IDS is properly configured for the network

in question. For our experiments, we keep the configuration
changes minimal, keeping in mind that our hope is that APIN
will be useful to analysts even without advanced expertise
and that many enterprise networks already incorporate their
own custom configurations. Specifically, we ensure that the
home net variable is specified according to the architecture
given in the datasets, and we download the most updated
version of the well-reputed Emerging Threats ruleset [44],
with the exception of the policy-based rules, which we exclude
because the datasets do not specify what software use policies
were implemented during the data collection.

The experiments were processed using an Intel Xeon X5650
(2.67GHz) CPU running ESXi 6.5.0, with two allocated VMS,
one for the APIN driver and one for the database. The driver
was allocated 2 cores, 32 GB RAM, and 48 GB HDD and ran
Ubuntu 18.04.3 LTS Desktop. The database was allocated 4
cores, 16 GB RAM, and 100GB HDD and ran Ubuntu 16.04.2
LTS Server. They were attached to the same virtual subnet.

B. DARPA99 results

The 16,616 alerts from Suricata’s output for DARPA99 were
converted from text to JSON format in 1.06s. The graph of 431
nodes was constructed and indexed in 8.70s. APIN completed
in 0.67s. We consider this runtime to be satisfactory.

Because of the architecture used to collect the DARPA99
data, the results produced by APIN were severely limited.
First, the simplicity of many of the attacks limits our ability
to identify multi-step attacks because those used in the exper-
iment seem to consist exclusively of a single link, where the
attacker stopped the attack once the target was compromised
and began a new attack, rather than pivoting between multiple
internal nodes. Specifically, all of the paths identified by APIN
contained one node in the “172.16.112.0/20” subnet and one
node from another subnet or network. In this case, APIN is
not useful. Nevertheless, understanding this limitation allows
us to draw the following insight.

Insight 1: Research datasets designed to model network
attacks should include multi-step attacks.

C. CSECICIDS2018 results

According to the data description provided by its authors,
the CSECICIDS2018 dataset contains a network of 450 benign
nodes and a separate network of 50 attacker nodes [42]. During
processing, we observed an unusually high connectedness for a
network of this size. Specifically, we identified 406 nodes that
had over 1000 inbound neighbors (i.e., those which produced
alerts when processed by Suricata) over the span of data
collection, with the highest reaching 5992. This phenomenon
seems to be the result of either mass spoofing by the attacker
network (which is not clearly detailed in the data description)
or of some third-party interference during the experiment. In
this particular case, we found that 11 of the 14 documented
victims were in the top 406 highly-connected nodes. This
complexity prevents the real-time parsing of the graph, which
grows exponentially. Nevertheless, we draw some insight from
this limitation:

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 15,2021 at 20:10:02 UTC from IEEE Xplore. Restrictions apply.

Insight 2: High-granularity network segmentation is impor-
tant for the efficient analysis of attack paths.

Following this observation, we chose to blacklist the nodes
with over 1000 inbound neighbors, preferring a partial result
over a prohibitive runtime.

The 3,323,426 alerts from Suricata’s output for CSECI-
CIDS2018 were converted from text to JSON format in 3m10s.
The graph of 97,873 nodes was constructed and indexed in
29m16s. APIN completed in 42.08s. Given that alert process-
ing and graph construction can proceed during data collection
(which spanned a week), we consider this runtime to be
satisfactory for the size of the dataset.

Another phenomenon in the APIN output is the frequent
occurrence of attempts to probe or exploit the vulnerability
known as EternalBlue (MS17-010). This observation was
noted for 4 of the top 5 paths and many besides, and
was triggered by several different Emerging Threats signa-
tures: [1:2025649:2], [1:2025992:1], [1:2025650:2]. Because
the publishers of the dataset do not describe any attacks using
EternalBlue or otherwise targeting SMB (the protocol which
EternalBlue targets), this supports our previous suspicion that
some of the traffic in the dataset was produced by external
sources. If this is the case, it may have implications for
the validity of ground truth for other experiments (such as
training machine-learning based IDSs). From this, we draw
the following insight:

Insight 3: Datasets collected from networks with internet
access should have strict controls over gateway traffic, on par
with those used in production networks.

The highest-ranked path (with a CTS of 34.31) contains
five nodes (A-E) across four links. Its detail are below. Alert
descriptions have been modified to improved readability, and
SIDs have been included for reference. External IP Addresses
have been truncated to preserve anonymity.

1) 103.aaa.aaa.aaa (A) to 172.31.67.46 (B)
• (1:2102465:9) SMB share access
• (1:2102466:9) SMB unicode share access
• (1:2025649:2) ETERNALBLUE Probe MS17-010

(MSF style)
• (1:2025992:1) ETERNALBLUE Probe MS17-010

(Generic Flags)
2) 172.31.67.46 (B) to 103.ccc.ccc.ccc (C)

• (1:2025650:2) ETERNALBLUE Probe Vulnerable
System Response MS17-010

3) 103.ccc.ccc.ccc (C) to 172.31.66.112 (D)
• (1:2102466:9) SMB unicode share access
• (1:2102465:9) SMB share access
• (1:2025649:2) ETERNALBLUE Probe MS17-010

(MSF style)
• (1:2025992:1) ETERNALBLUE Probe MS17-010

(Generic Flags)
4) 172.31.66.112 (D) to 54.eee.eee.eee (E)

• (1:2016149:2) Session Traversal Utilities for NAT
(STUN Binding Request)

We can clearly see that the attacker probes node B in link
1, which is verified as vulnerable in link 2. This sequence may
be indicative of a reflected attack (in which the response calls
back to an IP distinct from the one used to initiate the attack),
of a two-part attack (in which the attacker probes from node A
and launches the full exploit from node C), or of two probes
from distinct attackers. The precise meaning of this interaction
is not clearly discernible by APIN because of the nature of
the model. Specifically, because the model is directional and
acyclical, APIN only describes one side of each connection.
In any case, this can be manually verified now that APIN has
ranked its threat score appropriately. Note that the output given
above does not show the temporal relationship between alerts,
except in that at least one alert of a given link must precede
at least one alert of all following links.

IV. DISCUSSION

The present study has several limitations, which should
be addressed in future studies. First, the path identification
algorithms are limited by the ability of existing IDSs to
identify malicious and anomalous traffic. False-negatives from
these devices may prevent APIN from identifying certain links,
resulting in paths that are too short. However, because path
links require only a single edge to be included, but are ranked
according to threat score, False negatives from IDSs may cause
negligible harm in the APIN model if there are other correctly-
identified attacks along the same link as the missed ones.

Second, false-negatives and false-positives from the IDS(s)
used may reduce accuracy in the calculation of ITS for affected
nodes (and therefore CTS for affected paths). However, poor
accuracy in the source data can be mitigated in part by careful
configuration of IDS parameters. During the design and testing
of APIN, we found it particularly important to validate policy-
based rules, which prior to reconfiguration imposed a false-
positive rate of 82.2% in the CSECICIDS2018 dataset.

Third, ITS and CTS are objective standards, but they are
subject to certain parameters, such as the timespan of data
collection, which must be consistent for the metrics to preserve
their meaning between various samples or datasets. A simple
solution to this could be to define a specific amount of time
for which to consider, but at present such a definition would
be arbitrary and unprincipled. We leave this to future work.

Fourth, the above also makes it difficult to share precise
intelligence between different organizations. However, since
the sharing of this sort of intelligence between different
networks is often subject to privacy concerns anyway, and
since the attack paths can be abstracted with relative ease (e.g.,
replacing an IP address with “a DNS server”), we do not feel
that this limitation is prohibitive.

V. CONCLUSION

In this paper, we introduced an empirical approach for mod-
eling multi-step attacks. Our model is based on the concept
of threat score, which we quantified in terms of individual
threat score (against a single node) and composite threat score
(against an attack path). Our model includes algorithms to

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 15,2021 at 20:10:02 UTC from IEEE Xplore. Restrictions apply.

identify potential attack paths, including the option to specify
a known or suspected target or origin, and alternatively, can
automatically identify high-threat nodes and identify paths
targeting or originating from them. We have described some
reasonable parameters which must be met in the source net-
work, in order for the model to be useful and efficient, and we
have demonstrated that given those parameters, the model is
capable of identifying significant attacks, including several that
had not been identified in the given dataset. The metrics we
defined in order to quantify threat score are generalizeable to
many datasets (although not universal to each simultaneously),
resistant to some manipulation by attackers (although possibly
not fully robust), and explainable in plain language. The
algorithms for identification and ranking of attack paths are
also explainable and can be automated.

ACKNOWLEDGEMENTS

We would like to thank Matthew Herrada for his involve-
ment with the formulation of the models used in this paper.
This work is supported in part by NSF Grant #1736209 and
the NSA OnRamp II program.

REFERENCES

[1] J. Navarro, A. Deruyver, and P. Parrend, “A systematic survey on multi-
step attack detection,” Computers & Security, vol. 76, pp. 214–249,
2018.

[2] Lockheed Martin, “Cyber kill chain.” http://cyber.lockheedmartin.com/
solutions/cyber-kill-chain, (Accessed July 08, 2016).

[3] Mandiant, “Apt1 report.” https://www.fireeye.com/content/dam/
fireeyewww/services/pdfs/mandiant-apt1-report.pdf, February 16, 2013
(Accessed July 08, 2016).

[4] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in 2010 IEEE symposium on
security and privacy, pp. 305–316, IEEE, 2010.

[5] E. Ficke, K. M. Schweitzer, R. M. Bateman, and S. Xu, “Analyzing
root causes of intrusion detection false-negatives: Methodology and case
study,” in Proc. IEEE MILCOM’2019, 2019.

[6] J. Mireles, J. Cho, and S. Xu, “Extracting attack narratives from traffic
datasets,” in Proc. CyCon U.S. 2016, pp. 118–123, 2016.

[7] K. Pei, Z. Gu, B. Saltaformaggio, S. Ma, F. Wang, Z. Zhang, L. Si,
X. Zhang, and D. Xu, “Hercule: Attack story reconstruction via com-
munity discovery on correlated log graph,” in Proc. ACSAC’2016,
p. 583–595, 2016.

[8] S. Saurabh and A. S. Sairam, “A more accurate completion condition for
attack-graph reconstruction in probabilistic packet marking algorithm,”
in Proc. 2013 National Conference on Communications, pp. 1–5, 2013.

[9] J. Morales, M. Main, W. Luo, S. Xu, and R. Sandhu, “Building malware
infection trees,” in Proc. MALWARE, pp. 50–57, 2011.

[10] A. F. Shosha, J. I. James, and P. Gladyshev, “A novel methodology
for malware intrusion attack path reconstruction,” in Lecture Notes in
Social Informatics and Telecommunications Engineering, pp. 131–140,
Springer Berlin Heidelberg, 2012.

[11] J. A. Morales, A. Al-Bataineh, S. Xu, and R. S. Sandhu, “Analyzing and
exploiting network behaviors of malware,” in SecureComm, pp. 20–34,
2010.

[12] J. Tian, X. Li, Z. Tian, and W. Qi, “Network attack path reconstruction
based on similarity computation,” in Proc. ICNC-FSKD, pp. 2457–2461,
2017.

[13] P. Mell, K. Scarfone, and S. Romanosky, A Complete Guide to the
Common Vulnerability Scoring System Version 2.0. NIST and Carnegie
Mellon University, 1 ed., June 2007.

[14] S. Xu, X. Li, T. Parker, and X. Wang, “Exploiting trust-based social
networks for distributed protection of sensitive data,” IEEE T-IFS, vol. 6,
no. 1, pp. 39–52, 2011.

[15] X. Li, P. Parker, and S. Xu, “A stochastic model for quantitative security
analyses of networked systems,” IEEE Transactions on Dependable and
Secure Computing, vol. 8, no. 1, pp. 28–43, 2011.

[16] S. Xu, W. Lu, and L. Xu, “Push- and pull-based epidemic spreading in
networks: Thresholds and deeper insights,” ACM TAAS, vol. 7, no. 3,
2012.

[17] S. Xu, W. Lu, and . Zhan, “A stochastic model of multivirus dynamics,”
IEEE Transactions on Dependable and Secure Computing, vol. 9, no. 1,
pp. 30–45, 2012.

[18] M. Xu and S. Xu, “An extended stochastic model for quantitative
security analysis of networked systems,” Internet Mathematics, vol. 8,
no. 3, pp. 288–320, 2012.

[19] W. Lu, S. Xu, and X. Yi, “Optimizing active cyber defense dynamics,”
in Proc. GameSec’13, pp. 206–225, 2013.

[20] S. Xu, W. Lu, L. Xu, and Z. Zhan, “Adaptive epidemic dynamics in
networks: Thresholds and control,” ACM TAAS, vol. 8, no. 4, 2014.

[21] G. Da, M. Xu, and S. Xu, “A new approach to modeling and analyzing
security of networked systems,” in Proc. HotSoS’14, pp. 6:1–6:12, 2014.

[22] F. Leitold, A. Arrott, and K. Hadarics, “Quantifying cyber-threat vul-
nerability by combining threat intelligence, it infrastructure weakness,
and user susceptibility,” in 24th Annual EICAR Conference, 2016.

[23] S. Lee, S. Kim, K. Choi, and T. Shon, “Game theory-based security vul-
nerability quantification for social internet of things,” Future Generation
Computer Systems, vol. 82, pp. 752–760, 2018.

[24] H. Hu, H. Zhang, and Y. Yang, “Security risk situation quantification
method based on threat prediction for multimedia communication net-
work,” Multimedia Tools and Applications, vol. 77, no. 16, pp. 21693–
21723, 2018.

[25] M. Frigault and L. Wang, “Measuring network security using bayesian
network-based attack graphs,” in Proc. IEEE ICSAC, pp. 698–703, 2008.

[26] “CVE.” Available from MITRE, 2020.
[27] E. Ficke, K. M. Schweitzer, R. M. Bateman, and S. Xu, “Characterizing

the effectiveness of network-based intrusion detection systems,” in IEEE
MILCOM’2018, pp. 76–81, IEEE, 2018.

[28] J. Mireles, E. Ficke, J. Cho, P. Hurley, and S. Xu, “Metrics towards
measuring cyber agility,” IEEE T-IFS, vol. 14, no. 12, pp. 3217–3232,
2019.

[29] Z. Zhan, M. Xu, and S. Xu, “Characterizing honeypot-captured cyber
attacks: Statistical framework and case study,” IEEE Transactions on
Information Forensics and Security, vol. 8, no. 11, pp. 1775–1789, 2013.

[30] Z. Zhan, M. Xu, and S. Xu, “A characterization of cybersecurity posture
from network telescope data,” in Proc. InTrust, pp. 105–126, 2014.

[31] Z. Zhan, M. Xu, and S. Xu, “Predicting cyber attack rates with extreme
values,” IEEE Transactions on Information Forensics and Security,
vol. 10, no. 8, pp. 1666–1677, 2015.

[32] Y. Chen, Z. Huang, S. Xu, and Y. Lai, “Spatiotemporal patterns and
predictability of cyberattacks,” PLoS One, vol. 10, p. e0124472, 05 2015.

[33] M. Xu, K. M. Schweitzer, R. M. Bateman, and S. Xu, “Modeling
and predicting cyber hacking breaches,” IEEE T-IFS, vol. 13, no. 11,
pp. 2856–2871, 2018.

[34] S. Xu, “Cybersecurity dynamics,” in Proc. Symposium on the Science
of Security (HotSoS’14), pp. 14:1–14:2, 2014.

[35] S. Xu, “Emergent behavior in cybersecurity,” in Proc. HotSoS, pp. 13:1–
13:2, 2014.

[36] S. Xu, “Cybersecurity dynamics: A foundation for the science of
cybersecurity,” in Proactive and Dynamic Network Defense (Z. Lu and
C. Wang, eds.), vol. 74, pp. 1–31, 2019.

[37] R. Zheng, W. Lu, and S. Xu, “Preventive and reactive cyber defense
dynamics is globally stable,” IEEE TNSE, vol. 5, no. 2, pp. 156–170,
2018.

[38] H. Chen, J. Cho, and S. Xu, “Quantifying the security effectiveness of
firewalls and dmzs,” in Proc. HoTSoS’2018, pp. 9:1–9:11, 2018.

[39] M. Pendleton, R. Garcia-Lebron, J.-H. Cho, and S. Xu, “A survey on
systems security metrics,” ACM Comput. Surv., vol. 49, pp. 62:1–62:35,
Dec. 2016.

[40] H. Chen, J. Cho, and S. Xu, “Quantifying the security effectiveness of
network diversity,” in Proc. HoTSoS’2018, p. 24:1, 2018.

[41] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “The 1999
darpa off-line intrusion detection evaluation,” Comput. Netw., vol. 34,
pp. 579–595, Oct. 2000.

[42] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.,”
in ICISSP, pp. 108–116, 2018.

[43] “Suricata — open source ids / ips / nsm engine.” https://suricata-ids.org/
download/, Mar 2018.

[44] “Welcome to the emerging threats rule server.” https:
//rules.emergingthreats.net/, 2019.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 15,2021 at 20:10:02 UTC from IEEE Xplore. Restrictions apply.

