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Abstract—Coin mixing can be used to preserve identity privacy of Bitcoin owners, by engaging a set of middlepersons (i.e., Mix) to
temporarily hold the transacting Bitcoins and remove the linkage between the transacting parties. However, existing schemes are
generally not scalable due to limitations associated with the anonymity set, and self-credibility. In this paper, we propose an efficient
coin mixing scheme (hereafter referred to as CoinLayering). To achieve strong anonymity, CoinLayering randomly selects two sets of
middlepersons to respectively execute Bitcoin holding and Bitcoin trading. The seller can also select lower-loaded sets of
middlepersons in the shortest time possible. We also design two coin mixing protocols, CoinLayering-PA and CoinLayering-PB, to
mitigate the risk due to misbehaving middlepersons and Supervisor. We then mathematically prove that CoinLayering achieves both
strong anonymity and self-credibility, and evaluate its performance to demonstrate its scalability.
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1 INTRODUCTION

THe interest in cryptocurrency, and particular Bitcoin,
is partly evidenced by the increasing number of such

currencies and the trading volume [1]. For example, as
of Dec 5, 2020, there are reportedly 7,863 cryptocurren-
cies, in 33,925 markets, with a market capitalization of
USD 571,589,849,765 (and Bitcoin dominates approximately
62.46% of the market)1. In other words, the volume of
Bitcoin transactions is significant. Similar to other consumer
technologies, there are underlying security and privacy
challenges in Bitcoin and other cryptocurrencies [2], [3].
For example, since all Bitcoin transactions can be publicly
audited in the blockchain, one can perform an analysis of
the distributed ledger, using the heuristic cluster to analyze
transaction data, and infer the true identities of transaction
parties. The exposure of the user’s identity can lead to other
attacks, such as stealing of the user’s Bitcoins [4], [5]. One
high profile incident occurs in July 2017, where the leakage
of nearly 31800 users’ information on Bithumb (e.g., email
address and mobile phone number) facilitated the exfiltra-
tion of billions of South Korean won, the official currency of
South Korea [6]. This necessitates the protection of identity
privacy of transacting parties in the Bitcoin marketplace.

Manipulating the ownership of Bitcoins to obfuscate
the interlinkage of transacting parties (also known as coin
mixing) is one approach used to protect user identity pri-
vacy. Specifically, in such an approach, coin mixing usually
allows Bitcoin sellers to engage a set of middlepersons to
temporarily hold on to their coins and further blind the
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1. https://coinmarketcap.com/ (last accessed Dec 5, 2020).

transaction. As shown in Fig. 1, all sellers send their Bitcoins
and buyers’ identity information to the middlepersons and
entrust them to complete the transactions. Consequently, the
sellers and buyers are not linkable to each other.

Middlepersons  Seller 2

Seller 3

Seller 1

Buyer 2

Buyer 3

Buyer 1

Fig. 1. Coin mixing: A brief overview
There are, however, several challenges in the imple-

mentation of coin mixing, particularly if we also take into
consideration the constantly evolving threat landscape and
the scale of Bitcoin trading.

1) Strong anonymity. In an attempt to violate the identity
privacy of transacting parties, an adversary can guess
the buyer-seller relationship to bypass the coin mixing
system. This is an attack that affects most of the existing
schemes. Normally, the increase in the mixing scale can
improve the difficulty of guessing the relationship and
thus effectively defend against such an attack. Here
mixing scale is also regarded as the anonymous set,
which is mainly associated with the maximum num-
ber of simultaneous acceptable anonymous transactions
during the interval that the system completes a coin
mixing. Apparently, the larger the anonymous set, the
stronger the anonymity could achieve. For example,
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TABLE 1
A comparative summary of CoinLayering and other existing schemes

Functions [7], [8] [9] [10] [11], [12], [13] [14] [15], [16] CoinLayering
Strong anonymity × × × ×

√
×

√

Scalability Low execution time
√ √ √ √

×
√ √

Less bandwidth overheads × × × ×
√

×
√

Self credibility
Anti-denial service × ×

√ √ √ √ √

Preventing collusion
√

×
√ √ √

×
√

Preventing theft
√ √ √ √ √

×
√

merging multiple transactions into one transaction can
obscure the seller-buyer relationships to some extent,
but its effectiveness is subjected to the constraints of
Bitcoin’s maximum transaction size (e.g., 100KB). In
other words, existing schemes generally can only take
as input few transactions and this reduces the difficulty
of correctly guessing the mapping between both buyer
and seller [7], [8], [9], [10]. Alternatively, we can choose
to direct all transactions to an explicit middleperson,
say Mix, in order to efficiently separate the buyer from
the seller. However, the compromise of Mix would
make it easier to guess buyer-seller relationships in not
one, but many transactions [11], [12], [13]. Therefore,
how to achieve enhanced anonymity to against such an
adversary is a challenge, and this is the one we seek to
address.

2) High scalability. A practical coin mixing scheme needs to
be able to scale up (significantly) when needed, and it
does not appear to be the case in existing schemes. For
example, randomly selecting middlepersons to perform
mixing tasks can reduce the risk of colluding peers,
but it comes at the cost of execution efficiency and
consequently scalability [14]. In the case of a signifi-
cantly large number of transactions, the schemes in [7],
[8] can only take a transaction and serially execute the
mixing tasks. Such a design has time and performance
implications. Confined to the limited processing capac-
ity in terms of bandwidth and computation resources,
the middleperson in the schemes of [12], [13] becomes
a performance bottleneck, which can also lead to denial
of service (DoS). Therefore, CoinLayering is designed
to achieve high scalability.

3) Self credibility. Coin mixing allows the middleperson
to take control of the users’ Bitcoins, which in itself
is a risk. For example, to improve efficiency, existing
schemes such as those in [15], [16] introduced a third-
party to act as the middleperson. However, this requires
blind trust in this middleperson to be doing the right
thing (e.g. not to steal the user’s Bitcoins, not to collude
with an adversary and/or leak information about the
transaction) [12], [13]. Therefore, CoinLayering includes
a mechanism to penalize misbehaving middlepersons,
and consequently, achieve self-credibility.

Specifically, in our proposed CoinLayering (see also Ta-
ble 1), we introduce a User − Mix − Supervisor based
system model, in which the Supervisor is authorized by
the government (e.g. a central bank, banking regulator, or
financial intelligence unit), and responsible for the mid-
dlepersons’ (Mixes) task assignments. We assume Mix to
be some organization (e.g. a financial institution), which
profits by hosting the sellers’ Bitcoins and trading them

with the buyers. To achieve strong anonymity, and moti-
vated by the observation that the leakage of seller-buyer
relationship can potentially occur during the holding and
trading actions, these actions are delegated to two different
Mixes, and the User can randomly select both Mixes and
utilize different identities interact with them, which secures
the transaction’s privacy and further facilitates the growth
of anonymous set. Also, to achieve high scalability, we
design an efficient Mixes selection algorithm, which can
determine the Mixes that meet the User’s requirements
(e.g., privacy and efficiency) in the shortest time possible.
We also consider that in a real-world deployment, either
the Mix or the Supervisor may attempt to steal the User’s
Bitcoins. Thus, to be able to penalize a misbehaving Mix,
we design a coin mixing protocol under a semi-trusted
Mix (hereafter referred to as CoinLayering-PA), which uses
group signature to disclose the identities of misbehaving
Mixes to facilitate subsequent penalties. To penalize a
misbehaving Supervisor, we design a coin mixing protocol
under a semi-trusted MixSupervisor (hereafter referred to
as CoinLayering-PB), which employs the security threshold
signature to replace the supervisor and make up the cost
difference.

In the next section, we will introduce relevant back-
ground materials and the related literature. In Sections 3 and
4, we will give an overview of CoinLayering and the secure
coin mixing protocol, respectively. Then, we will present our
security and performance evaluations in Sections 5 and 6.
The last section concludes this paper.

2 RELEVANT BACKGROUND AND LITERATURE

2.1 Background

In a typical coin mixing scheme, there exists a middleperson
set M , a seller s and a buyer b. The coin mixing procedure
F (s, b) can be formalized as follows:

F (s, b) = f1(s,M) • f2(M, b), (1)
where f1(s,M) is used to remove the link between the seller
and transaction Bitcoins. This compounds the challenge of
a middleperson in inferring the origin of these Bitcoins, and
f2 (M, b) is used to ensure accurate delivery to the right
buyers.

A practical coin mixing scheme should satisfy the fol-
lowing requirements, even when dealing with large-scale
Bitcoin transactions:

• Strong anonymity. To improve the difficulty of guess-
ing, the anonymity set should be as large as practical.

• DoS resilience. Under normal circumstances, the
middlepersons would be available to provide mixing

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on March 16,2021 at 12:18:21 UTC from IEEE Xplore.  Restrictions apply. 



1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3043366, IEEE
Transactions on Dependable and Secure Computing

3

services to users, failing which the middlepersons
must be held accountable.

• Low execution time. The execution time should be
minimized.

• Minimal bandwidth overhead. To avoid service
degradation due to network congestion, the band-
width overhead should be as minimal.

• Preventing collusion. In the event that middleper-
son collude, either among themselves or an external
adversary, to disclose the seller-buyer relationship,
there must be a mechanism to identify and penalize
these misbehaving middlepersons.

• Preventing theft. The middlepersons cannot steal the
users’ Bitcoins.

2.2 Related Work

There have been attempts to design anonymous cryptocur-
rencies, such as Zerocash [17] and Monero [18]. Although
such anonymous cryptocurrencies are promising, they are
not as widely adopted as Bitcoin. Hence, in this paper we
will only focus on coin mixing that can be deployed in
Bitcoin (or other similar cryptocurrency). According to the
system structure, existing Bitcoin mixing schemes are either
completely centralized or completely decentralized.

Completely decentralized based schemes. Maxwell
et.al [9] proposed a coin mixing scheme (Coinjoin), in which
a large number of peer nodes in the blockchain are engaged
as middlepersons. To remove the link between the seller and
the buyer, a middleperson is required to combine multiple
transactions into one transaction. However, the middleper-
son may be able to infer relevant transaction information
and collude with each other during the node negotiation
process. Hence, Ruffing et.al [7] proposed CoinShuffle,
which shuffles the output address. Such an approach pre-
vents the middleperson from learning information about the
buyer associated with the transaction. To reduce the number
of communication rounds, they proposed CoinShuffle++ [8].
To ensure the resilience of the system in the event of attacks
or node failure, Ziegeldorf et.al [19] proposed CoinParty.
The latter uses both secure multiparty computing protocol
and threshold signature technology to improve robustness.
However, it requires the middleperson to be online all the
time, and it is vulnerable to DoS attacks. Moreover, subject
to the constraints of Bitcoin’s maximum transaction size, it
only allows one to input few transactions. In other words,
the anonymous set is small. To overcome these limitations,
Maxwell et.al [14] proposed Xim, which allows the seller
to randomly and anonymously select middleperson so as to
conceal the real task execution position. Such an approach
increases the difficulty of guessing the mapping between
buyer and seller, and is resistant to DoS attacks. However,
it needs take several hours to complete a coin mixing task,
and clearly is not scalable.

Completely centralized based schemes. Bonneau et.al
[15] proposed the centralized MixCoin scheme, in which
all transactions are handled by a middleperson (Mix) in
order to separate the buyer from the transaction Bitcoins.
While it can prevent the Mix from stealing the User’s Bit-
coins, it does not prevent the Mix from leaking transaction
information. Thus, Valenta et.al [16] used blind signature

to remove the relationship between the buyer and the
transaction. However, in their approach, the Mix can steal
the User’s Bitcoins. Inspired by eCash, Heilman et.al [11],
[12] designed an anonymous cryptocurrency (TumbleBit),
which is compatible with Bitcoin. TumbleBit uses both blind
signatures and smart contracts to ensure security during
transactions between Users and Mixes. The Mix in Tum-
bleBit uses multi-party secure computing’s cut-and-choose
method to remove the link between the seller and the Mix.
Ferretti et.al [20] improved TumbleBit, in order to be used
for anonymous payments on private chains. In a separate
work, Liu et.al [13] respectively adopted group transaction
to reduce the possibility of Bitcoins stolen by Mixes and
ring signature to accurately deliver the transaction to the
buyer. However, the exposure of Mix will ease the correct
guessing of the buyer-seller relationships. In addition, for
large scale transactions, they are also vulnerable to DoS
attacks due to the performance bottleneck of Mix.

Unlike the above discussed approaches, our proposed
CoinLayering adopts the User −Mix − Supervisor based
system model. In the model, the Supervisor (a central
node) is only responsible for lightweight task assignment
and regulation, and thus removes the risk of being a per-
formance bottleneck. Also, Mixes are randomly selected to
implement coin mixing so as to improve anonymity.

TABLE 2
A summart of notations

Notation Description

Mix The mixing server
Supervisor The mixing server’s supervisor

BB bulletin boards
(xi, yi) The private/public key pair of Mixi, yi = gxi

IDi Mixi’s identity
Ei Mixi’s escrow address
Ki Mixi’s private address
E Supervisor’s total escrow address
pi Mixi’s modulus
~Ak
i The attribute score vector of Mix
~w The user-defined query preference weight
DA The dominance graph first-level data
CL The ordered candidate table CL
RS The result table RS
k1, k2 The ordered candidate and the result table’s length
h The highest total score

T1, T2, T3, T4 Four time limits for the mixing phase
I,O Input address I , output address O
Vi Mix’s commitment to Users
W An escrow voucher from Mix

noncei The random number to prevent replay attacks
fi The Mix’s mixing fees
b Blind factor for blinding messages

U,U∗ User’s two identities
txi Bitcoin transactions
bi Lagrange interpolation
T Key update algorithm time slice
ρ The queuing intensity
LQ The average queue length
Li Mixi’s current queue length
BC The total value of the current transaction

3 OUR PROPOSED COINLAYERING

In this section, we present the system model and the respec-
tive system components and features, the Mixes selection
approach to guarantee execution efficiency, and two poten-
tial threats faced by CoinLayering. Table 2 summarizes the
notations used in this paper.
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3.1 System model

As is previously discussed, to increase the difficulty of
guessing the seller-buyer relationships and further achieve
the strong anonymity in large scale Bitcoin transactions,
CoinLayering allows for the random selection of Mixes
and separation of holding and trading action assignment
to the different Mixes. Also, to achieve scalability, Coin-
Layering allows User to select multiple available Mixes
in the shortest time possible. Specifically, we introduce a
User − Mix − Supervisor based coin mixing scheme. It
requires all Mixes to compete for the coin mixing task.
Supervisor is tasked with Mixes assignments and reg-
ulation, which is responsible for recommending the most
appropriate k candidate Mixes that are able to satisfy the
User’s requirements. Then, User selects two lightly loaded
Mixes as the ultimate performers in a random fashion.
Moreover, to minimize communication overhead, we intro-
duce a Bulletin Board to broadcast relevant information.
The system model in CoinLayering is represented in Fig. 2.

Mixing request

Voucher

BB

Audit

Supervisor

User2User1
Output address OInput address I

Register

chosen Mix1
Escrow address  E1
Private address  K1

chosen Mix2
Escrow address  E2
Private address  K2

Service 
request 

Voucher

Transaction 2

Fig. 2. System model in CoinLayering

• User is the seller in a transaction. To protect its iden-
tity privacy, it would initiate a coin mixing request
to Mix and select two lightly loaded Mixes from k
candidates.

• Mix provides the coin mixing service, on a fee-for-
service basis. To be more competitive, Mix reveals
its operation status data to supervisor.

• Supervisor is responsible for recommending the
k candidate Mixes to User, making up the cost
difference between Mixes and monitoring Mixs’
behaviors to prevent theft (conceptually similar to
the banking regulator, or the trusted government
department). Apparently, as the central controller,
Supervisor may even be a chock point of the sys-
tem capacity due to the shortage of resource, in
the face of large scale Bitcoin transactions. The ad-
vent of cloud service, however, offers a new ap-
pealing option to support coin mixing service over
the Blockchain. It provides an opportunity to design
a feasible Supervisor without resource constraints.
In addition, the pay-per-use nature of cloud service
provides incentives to encourage the blockchain ad-
ministrators to deploy mixing service. Consequently,
migrating Supervisor to the cloud becomes more of
a natural choice.

• Bulletin Board (BB) is used to broadcast public infor-
mation, including communications between Users
and Mixes.

Under ideal conditions, CoinLayering works as follows:
Step 1: Mix sends a registration request to the Supervisor.

Upon successful registration, Mix can provide mix-
ing services for users.

Step 2: User makes a mixing request to Supervisor, which
recommends k candidate Mixes to the User. On
being accepted, User selects two Mixes from k
candidates. Let Mix1 and Mix2 respectively denote
these two chosen Mixes.

Step 3: User makes service requests to the two Mixes.
Mixes receive the requests and then send the com-
mitment V as the reply. User transfers Bitcoins from
address I to escrow address E1 of Mix1, and then
builds a transaction tx1 : I → E1 (recorded in BB).

Step 4: Mix1 confirms the transaction from BB and sends
a voucher W to User.

Step 5: User receives voucher W and sends it to Mix2.
Step 6: Mix2 receives voucher W and builds a transaction

tx2 : K2 → O, where K2 is the private address of
Mix2.

Step 7: After the mixing is completed, the Supervisor au-
dits the Mixes by reviewing the BB and recycles
the amount in all the escrow addresses Ei to its
total escrow address E. It also transfers the same
Bitcoins to the private address of Mix2 according
to tx2’s record. Supervisor audits once within a
certain time.

One may argue that, once the two Mixes collude with
each other, the User’s identity privacy may still be leaked.
However, the possibility of such an event occurrence is
relatively low. The reasons can be stated as follows. Firstly,
without being aware of each other, the candidate Mixes
have been designated to User by the Supervisor. In this
case, it is difficult for them to collude in advance. Secondly,
the User can further optionally select two Mixes from the
candidates according to its security requirements, which fur-
ther increases the collusion between these Mixes difficulty.

3.2 Mix Selection

In CoinLayering, we adopt the multiple supplier selection
strategy to improve the difficulty of guessing the seller-
buyer relationships, i.e., on one hand Supervisor needs
select k appropriate candidate Mixes according to User’s
performance and security requirements (e.g., the execution
efficiency and credibility), on the other hand User needs
randomly select two lightly loaded Mixes from these can-
didates. Obviously, in CoinLayering, the results of Mix se-
lection not only affects the quality of coin mixing, but also its
execution time. This requires that Mixes selection is able to
satisfy all Users’ requirements in the shortest time possible.
But, there are two problems to achieve this goal. Firstly,
the diversity of Users’ requirements makes it difficult to
match. For example, some Users focus on mixing fees,
while others on service efficiency (both are contradictory).
Secondly, considering Supervisor cannot obtain the Mixes’
status information (or underlaying network) in real time,
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numerous concurrent asynchronous mixing tasks would
make a few Mixes in k candidates be over-allocated. Once
the User designates such Mix as an ultimate performer,
this would cause it to a long wait. In this case, as for this
User, whether or not to reselect a Mix is a hard decision.
For these, we first formulate the candidate Mix selection
problem, and then design an efficient algorithm to solve it.
Moreover, we utilize M/M/k queueing based prediction to
give the optimal decision.

Definition 1 (Mix service). Given a Mixi, its Mix
service is measured by multiple attributes that are of in-
terest to User (including bandwidth, acceptance rate, ser-
vice efficiency, credibility, etc.), which can be expressed
as pi = {IDi, fi, ~Ai}, where IDi denotes the identity of
Mixi, fi denotes its mixing fee, and ~Ai denotes its attribute
vector. The attribute vector is

−→
Ai =

[
A1
i , A

2
i , ..., A

k
i

]
, where

Aki ∈ [0, 100] denotes the score of kth attribute.
Definition 2 (User’s preferences). Each User may have

different preferences. For example, some Users may focus
on the mixing price, while others on service efficiency.
Given a Userj , we formally define the top k query as
Qj = {fj ,−→wj} [21], where fj denotes the highest mixing
fee accepted by Userj , −→wj =

[
w1
j , w

2
j , ..., w

k
j

]
denotes the

weight vector of Userj ’s preferences and
∑
m w

m
j = 1.

Definition 3 (Aggregate function). Given a Mixi and a
Userj , the matching degree MDj

i between Mixi and Userj
can be computed through the following aggregation func-
tion. After receiving the User’s mixing request, Supervisor
refers to Mixes’ service information in BB, and returns the
top k Mixes with the highest aggregation value to User.

MDj
i =
−→
Ai • −→wj (2)

Mix selection algorithm. When the number of Mixes
is larger, it is impossible to rapidly compute each aggregate
value for them. An efficient solution is to filter those con-
spicuously unsuitable Mixes and simplify the constraint
condition. For this, we introduce the Domination Graph
(DG), which can show the dominance relationship of each
Mix’s attributes [22]. When all attributes of ~Ai are greater
than ~Aj , we consider that ~Ai dominates ~Aj . ~Ai is placed on
the first layer and ~Aj is placed on the next layer. Obviously,
Mixes in the first few layers are what Users require. In
this, we can easily filter a part of Mixes with too low
attributes by means of DG. Considering that the first layer
has more dominance relationships, its Mixes would have
higher priority, i.e., more in line with Users requirements.
Thus, we start from the first layer departure and meantime
combine with mixing costs to select Mix. The process of
searching top-k Mixes is depicted in Algorithm 1.The time complexity of this algorithm mainly depends
on the number of Mix accessed in the domination graph.
It can be expressed as o (|S|), where S is the set of ri,
and ri denotes the accessed Mix. Considering that S be-
longs to multi-level structure, we define the set S1 ={
r1i
∣∣r1i ∈ Layer1}, where r1i denotes the node in Layer1.

Suppose h1 is the Mix with highest score in Layer1,
and S2 (h1) =

{
r2i
∣∣r2i is the leaf of h1 }. We search the

second-highest Mix in S2 (h1). By that analogy, we infer
that |S1 ∪ S2 (h1)| ≤ o (|S|) ≤ |S1 ∪ S2 (h1) · · · ∪Sk|, where
k denotes the number of queried layers.

Waiting decision strategy. Because Supervisor cannot
see the service queue length of Mixes, it may recommend

Algorithm 1 Mix selection based on DG
Input: DG, User query parameter ~w, aggregate function f
Output: Top-k Mixes, result table RS

1: BEGIN
2: CL← f(DA, ~w); //the dominance graph first-level data DA
3: RS ← r from the CL; //the ordered candidate list CL
4: For k1 < k2 dolength
5: For each child C of r do //the highest total score r
6: If All parent nodes of C /∈ CL Then
7: CL← k(C, ~w);
8: End If
9: RS ← r ;
10: End For
11: End For
13: END

those overloaded ones to User. In the context of random
influence, once User unconsciously chooses such Mixes, it
has to wait a significant amount of time. A straightforward
strategy is to immediately reselect another Mix from the k
candidates. But, compared to the waiting, it may take more
time due to the high processing overhead of Mix switching.
It also highlights the waiting decision that becomes a key
step in improving the system efficiency. Another alternative
strategy is to achieve good load balancing and avoid the
overloaded candidate Mixes. Toward this end, the number
of candidate Mixes k should be as more as possible. How-
ever, excessive candidate Mixes cannot only increase the
administration overhead of Supervisor, but also its compu-
tation overhead. In this, it is necessary to determine the most
suitable value of k, i.e. , find an optimal k without incurring
Supervisor overload, which ensures that this amount of
Mixes cannot only complete the relevant tasks, but also
require least waiting time for User.

We use the M/M/k queuing theory to model the least
number of Mixes involved in CoinLayering, where k de-
notes the least number of Mixes providing mixing services
for Users. Suppose that User arrives at a Poisson flow with
a parameter λ, and coin mixing service time also follows a
Poisson distribution with parameter µ. Note that, the time
series of user arrival is a sequence of i.d.d. random variables,
which is the same as mixing service. In the M/M/k queuing
system, there are two factors affecting k: one is the queuing
intensity ρ = λ

kµ ; another is the reduced-length of queue
with the increase of k. The former is used as a reference to
account for the relationship between the number of Users
entering the system per unit time and the greatest number
of Users served by Mixes. Generally speaking, for the
system, ρ < 1 is the most reasonable. This is because,
when ρ ≥ 1, the number of entering Users is more than
the number of acceptable Users. In this case, it would
bring about the long waiting queues and the overburdened
Mixes, which makes the system unstable. Based on it,
on the condition of given λ and µ parameters, we can
infer k > λ

µ . The latter reflects the impacts of increasing
k on the queue length. To achieve the best benefits, how
to increase k has the biggest impact on decreasing the
average queue length LQ. From the queuing theory, the
average queue length is LQ = (λ/µ)k×λ×µ

(k−1)!×(k·µ−λ)2 × P0, where

P0 = [
∑k−1
n=0

(λ/µ)
n! + (λ/µ)

k! ( kµ
µ−λ )]

−1 denotes the probability
that all Mixes are free. Based on it, k search issue can
be formulated as max

k=1...n

(
LQk+1−LQk

LQk−LQk−1

)
. Through combining
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above factors, Supervisor eventually searches a feasible k.
After k has been determined, the waiting decision pro-

cess can be stated as follows: when User sends the service
request to a busy Mixi, Mixi would inform the User of the
current queue length Li. If Li ≤ LQ, we recommend User
to wait; otherwise, it should choose some other Mixes,
where LQ denotes the average queue length. It’s worth
noting that, although the operations of Mix1 (responsible
for performing group signatures) and Mix2 (responsible for
verifying group signature) are different, their computation
costs are almost the same, which would be proved in the
experimental evaluation section. This means that we do not
have to distinguish them in design waiting decision strategy.

3.3 Potential Threats
For simplicity, the above strawman design assumes all
components to be honest and well behaved. Once relax
these assumptions, CoinLayering would face the following
potential threats. To fix these threats and enhance its self-
credibility, we respectively devise the corresponding coin
mixing protocols in Section 4.

Semi-trusted Mixes. To maximize their self-interest,
Mix may record Users’ transaction information in the
background, and sell them to the adversary. Moreover, it
is likely to steal Users’ Bitcoins without providing any ser-
vice. Furthermore, the lazy Mix would deliberately delay
the service time. Therefore, it is necessary to disclose the
identities of misbehaved Mixes′ and further punish them.

Semi-trusted Supervisor. Because ”enemy within” ex-
ists, Supervisor may be not completely honesty. For ex-
ample, the misbehaved insider may steal Users’ Bitcoins
and make false accounts to cover up its behavior. More
complicated, it may some compromise Mixes to obtain
their private keys and further steal Bitcoins. Therefore, it
is desired to limit the Supervisor’s behaviors and thus
prevent from its stealing.

4 SECURE COIN MIXING PROTOCOL FOR COIN-
LAYERING

In this section, we first describe a coin mixing protocol
to prevent Mix’s semi-honest, termed as CoinLayering-
PA. And on this basis, to further solve the Supervisor’s
semi-honest behavior, we design a more secure coin mixing
protocol termed as CoinLayering-PB.

4.1 CoinLayering-PA
The primary principle of CoinLayering-PA design can be
stated as follows: to secure the ownership of Bitcoins,Mixes
that host Users’ Bitcoins must mark the vouchers with sig-
natures; to prevent from Bitcoins stolen, Mixes are required
to provide the deposit to Supervisor; to prevent Mix from
colluding with adversaries to leak information, the interac-
tion between Mixes should be blinded; to urge lazy Mixes,
Users are allowed to set time constraint. Guiding by this
principle, we combine the Schnorr signature and congru-
ence based group signature technologies to proof the Mix’s
escrow Bitcoins. The choice is due to the following: (1) it can
insure the anonymous between Mixes, i.e., Mix1 cannot
see the identity of Mix2 when verifying the signature, and

further prevent them from colluding with each other. (2)
It allows Mixes dynamically joining and exiting, which is
more applicable for large scale transactions. (3) It has less
computation, and makes the entire protocol more efficient.

As is shown in Fig. 3, there are three phases in our proto-
col: registration, mixing and audit. Only when Mix puts up
rent deposit can eligible for rendering mixing service. When
Users request coin mixing service, the time limits Ti for
the service is attached. If Mixes accept the request, it must
be completed within Ti. After the escrow operation, Mix1
signs the blind message as a voucher. Users can require
Mix2 to complete transaction by virtue of this voucher.
During the execution of a transaction, we allows User to
terminate transaction under these conditions: if Users want
to terminate the transaction after received the commitments
from Mixes, they just have to wait until after the T4; if
Users want to terminate the transaction after constructed
tx1 : I → E1, it only needs to change the output address O
to I and ID2 to ID1 in the message m′. Then, certificate
W is handed over to Mix1 for verification, which can
facilitate it to construct the transaction tx2 : K1 → I ,
and further recover the transaction. In addition, considering
User need pay for mixing service, as the number of coin
mixing increases, its financial burden would grows. In this
case, we design an incentive mechanism. Its basic idea is
that Supervisor authenticates Users’ applications and then
provides some rebates for users who continuously mixed
coins. Limited by the space, we will depict in Appendix A.

T1, T2 T3, T4

Commitment V1 Commitment V2

U: m’
Tx1: I->E1

Certificate W
U*:W,b

Tx2: K2->O

DepositDeposit
pk2, sk2pk1, sk1

c

Tx3: E1->E Tx3: E2->E
Audit

Txi: E->K2

Mix1 User Mix2 BB

Registration

Mixing

Audit

Supervisor

Joint-E1 Joint-E2

Fig. 3. CoinLayering-PA.

4.1.1 Registration phase

In this registration phase, Mix must put up the deposit and
its private address with enough Bitcoins. There are three
sub-sets of the condition: proof of Bitcoins, join and exit.

Proof of Bitcoins: Only if the following conditions are
fulfilled would the User be qualified as aMix: hold enough
Bitcoins so as to provide mixing services to User, and
possess sufficient bandwidth and computation resources so
as to complete coin mixing task. When the above conditions
are met, it needs further register itself to Supervisor. It
firstly signs ECDSA for one of his own private addresses
K and waits for Supervisor’s verification. Once successful,
it would provide the deposit to Supervisor’s total escrow
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address E. After Supervisor receives the deposit and pub-
lishes the User’s service information (e.g., its reputation and
service efficiency) on BB, the User is registered successfully.
This means that it is officially upgraded to a Mix.

Join: Supervisor sends a modulus pi to each Mix. Each
Mix generates its own private key xi, and calculates its
own public key yi = gxi mod pi. Then, speak its yi and
ID and meantime send them to Supervisor. If Mix has
a malicious move, Supervisor can be held accountable
according to its identity. To prevent Mix from messing up,
Mix needs to prove by knowledge sign that it owns the
private key xi and submits the corresponding public key
yi [23]. Mix selects a random number ri, and computes
ci = H(Time||yi||g||gri), si = ri − ci · xi, where Time is
a timestamp. After Supervisor receives ci and si, it verifies
that ci = H(Time||yi||g||gsiyici). If the equation is true,
User can prove yi = gxi mod pi. Supervisor constructs
the Chinese remainder theorem congruence c = yi mod pi
according to yi and pi of each Mix [24], and compute
c =

∑k
i=1 yi · Pi · P ′i and post it on the BB. Among them,

P =
∏k
i=1 pi, Pi = P/pi. P ′i satisfies the integer solution of

Pi · P ′i = 1.
Exit: When Mix exits, Supervisor conducts a transac-

tion audit. If the audit result is correct, the public key yi of
Mix is changed by Supervisor, the new c is calculated and
updated on BB, so that the Mix cannot perform the legal
group signature.

4.1.2 Mixing Phase

In the mixing phase, User reached an agreement with Mix.
If Mix agrees to provide the service, it needs to provide a
commitment to User. When User initiates the transaction
tx1, Mix1 needs to give it a group-signed voucher W . After
Mix2 verifies W , it would build tx2 to complete the coin
mixing. Mixing phase including the following steps.
Step 1: User wants to make a transaction tx0:I(input

address)→O (output address). For this, it first ran-
domly selects two from the recommended k Mixes,
and creates two identities U and U∗. Then, as U ,
send both T1 (Time limit for transaction I → E1)
and T2(Time limit for signing message m′ ) to Mix1.
And meantime, as U∗, send both T3 (Time limit
for sending voucher W ) and T4 (Time limit for
transaction K1 → O) to Mix2.

Step 2: If Mix1 accepts the mixing request, it
needs to send the commitment Vi =
{nonce1, T1, T2, sign{T1||T2||nonce1}x1} to the
user. The sign is the group signature 1 based
on Schnorr signature with parameter c. For a
message m, Mix1 chooses a random number r,
and calculates s1 = gr mod pi, s2 = H(m) · xi − r.
(pi, s1, s2) is the signature. Nonce is a random

1. It is well established that, in the traditional group signature, the
verifier can distinguish whether the two signatures come from the same
signer. In this, one may argue that once a User selects the same Mixes
multiple times in a row, the selected Mix2 is able to guess the genuine
identity of User correctly. However, on one hand the probability of
such case is very small, because our adopted load balancing techniques
could avoid assigning multiple tasks to the same Mixes; on other hand
aiming at this problem, the researchers have proposed a more secure
group signature technique [25], which is shown in Appendix B.

number to prevent the replay attack. The same is
true for Mix2.

Step 3: When User authenticates Vi, the public keys y1, y2
of theMixes are recorded. User first calculates yi =
c mod pi according to the information disclosed by
the group c, and then judges whether the equality
s1 · gs2 = yi

H(m) is true, which can determine the
validity of the signature Vi.

Step 4: User builds the transaction tx1 : I → E1

(announced on the BB), and generates m =
{O||ID2||nonce3}, a random number b as the blind-
ing factor, and calculates m′ = m · by2 . Finally, send
m′ to Mix1.

Step 5: Mix1 confirms the transaction tx1 and signs W =
sign{m′}x1 to User by group signature. W is
the voucher used to communicate with Mix2. For
Mix1, a transaction tx1 corresponds to a signature.
If Mix is excessively signed, it will be discovered
and punished by Supervisor in audit phase.

Step 6: User U changes his identity to U∗, posts voucherW
onBB and sends {W, b,O, ID2, nonce3} toMix2 to
verify the voucher.

Step 7: Mix2 first verify the group signature to obtain m′,
remove the blindness of b and y2 to obtain m∗, and
compare with the m. If they are consistent, Mix2
build the transaction tx2 : K2 → O, where K2 is the
private address of Mix2. Otherwise, Mix2 rejects
the voucher.

Change of User’s identity belongs to data obfusca-
tion at the network layer. To prevent adversary from ob-
taining identity and privacy information by discovering
the network topology, researchers have proposed that the
blockchain can be used on networks with privacy protection
features, such as Tor [26]. Another type of digital currency
known for privacy is Monero, which uses an anonymous
communication scheme I2P [27]. Compared to the Tor proto-
col, the same network link is used to send and receive data.
I2P uses multiple links to send data and Accepting data
can better hide IP and prevent transaction the traceability
through network layer information [28] .

4.1.3 Audit Phase
In the audit phase, Mix’s denial of service needs be mon-
itored by Supervisor. In addition, transaction differences
between Mixes need be made up of auditing signatures.

Denial of service audit: For Mix’s denial of service
behavior, we use the form of User disclosure for auditing. If
E1 refuses to signm′ message after generating tx1 : I → E1,
User only needs to take the record of Mix1’s commitment
V1 and tx1 to expose. If tx3 : K2 → O is refused after
Mix2 verifies the credential W , User only needs to hold
the commitment V2 and the voucher W of the Mix2 to
expose. Supervisor confirms the disclosure. If there is a
denial of service in Mix, Supervisor will deduct the de-
posit and mark the corresponding Mix by ID, and Mix’s
reputation will decrease. Once the score of tags is too low,
the Supervisor has the right to force the malicious Mix to
exit group.

Signatures audit: Supervisor compares whether the
number A of Mix′s signatures is less than or equal to the
number B of corresponding host transactions. If A > B,
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Mix is considered as malicious one. Then, Supervisor
would deduct the mixed consumption and its deposit, and
meantime force it out of the group. Finally, Supervisor
builds tx3 : Ei → E to recycle Bitcoin of all escrow
addresses Ei to the total escrow address E of Supervisor.
For honest Mixes, Supervisor sends mixing consumption
to their private addresses.

4.2 CoinLayering-PB
When Supervisor makes up the cost difference between
Mixes, it may steal Bitcoins. To prevent such behavior,
CoinLayering-PB should allow the transactions between
Mixes be carried out by themselves. For this, we use
threshold signature technology to insure the security of this
operation. The choice is due to the following: (1) secure.
For a Mix’s operation, only when a majority of Mixes
support can be completed. (2) Fault-tolerant. Even under
the condition that 1/3 Mixes are compromised, it can nor-
mally work. (3) Efficiency. Supervisor can provide a large
number of parameters for the threshold signature process
in advance. Moreover, to prevent private keys from being
compromised and thus protect Mixes’ Bitcoins, we also
improve the group signature. To sum up, as is shown in
Fig. 4, the improvements in CoinLayering-PB are mainly in
the following phases, compared to CoinLayering-PA.

T1, T2 T3, T4

U: m’
Tx1: I->E1

Certificate W
U*: W,b

Tx2: K2->O

Tx3: E1->E Tx3: E2->E

Mix1 User Mix2 BB

Registration

Mixing

Audit

Supervisor

E

Deposit Deposit
pk1, sk1 pk2, sk2

c

Audit

Joint-RSS

Commitment
V1·t+1

di, [d-1]i di, [d-1]i

s,Tx4: E->K2

Commitment 
V2·t+1

Fig. 4. CoinLayering-PB. The operations in red rectangles are ones
distinct from CoinLayering-PA.

In the registration phase, each Mix’s escrow address
should be generated by itself. We use secure Joint − RSS
to achieve it. The detailed process is as follows:
Step 1: Each Mix gets the share ki of the key k by secure

Joint−RSS, which is based on Shamir Key Sharing
(SS). It can divide a key into n key shares. As long
as 2/3 participants are online, the original key can
be restored through the key share.

Step 2: Mix computes the public key kiG(announced on
theBB, and the escrow address isEi = Hash(kiG).

Step 3: Total escrow address E = Hash(
∑
i∈T bikiG), bi =∏

i∈A,i6=j
j
j−i .

The specific contents of Joint − RSS are as follows:
each participant Mixi takes itself as the center and selects a
random secret value ki

0. Then, construct a polynomial fi(x),

and execute SS to get the share of ki
0. Mixj(1 < j < n)

receives the fi(j) sent by the remaining n − 1 participants
Ui(1 < i < n, i 6= j) and calculates ki =

∑n
1 fi(j) as

the key share; to ensure the correctness of fi(x) sent by
Mixi. Each Mixj can get ki

0G, ailG. Mixj can calculate
ki

0G = fi(x)G =
∑n

1 i
l(ai

lG). If the equation is true,
the key share received by Mixi is correct. Meantime, the
secret by the participants is k =

∑n
1 ki

0, the secret-sharing
ki =

∑n
1 fi(j).

In the mixing phase, the group signature of the Mix is a
very important step. If the private key of the Mix is leaked,
not only the identity of the Mix will be forged, but the
Bitcoin in the escrow address will also be at risk. It is very
important to prevent the private key of Mix from leaking.
We have improved the group signature as follows:

During the t time period, the private key of Mixi is xi·t.
At time t + 1, the private key xi·t+1 = xi·t

2 mod (pi− 1). At
the same time, the key update algorithm will erase the key
in time t immediately after the private key in time t + 1 is
generated. If t = T , the private key is output as an empty
string. When the time slice runs out, group members need
to regenerate a pair of keys.

The user’s group signature s1 = gr mod pi, s2 =
H(m) · xi·t − r. For group signature verification, first the
verifier calculate yi = c mod pi according to the information
disclosed by the group c, and then judge whether the
equality s1 ·gs2 = yi

H(m)·2t is true to determine the validity
of the signature.

In the audit phase, all escrow addresses are generated by
the Mix and the Supervisor cannot operate on the escrow
address. But this does not affect the Supervisor auditing
Mix. If a malicious Mix privately forwards the Bitcoin in
the escrow address, and it will be discovered during the
audit phase. Supervisor will punish dishonest Mix, deduct
the deposit and cancel its identity. During the audit phase,
Supervisor removes all Mixes with malicious behavior.
Mixwants to get the corresponding Bitcoin from the escrow
address. Divided into the following steps.

Step 4: Each Supervisor initiates a transaction txi : Ei →
E. All Bitcoins are transferred to the total escrow
address.

Step 5: The Supervisor calculates the Bitcoins that the Mix
should receive and announces the audit results on
the BB. The Supervisor generates the key d, [d−1]
and calculates the key share di, [d−1]i through the
SS. Supervisor will assign them to each Mix.

Step 6: Mix initiates its own transaction tx4 : E → Ki, and
computes e = H(txi). With (x, y) = diG andR = x,
each Mix computes si = ([d−1]i) · (e + ki · R) and
puts si on the BB.

Step 7: The Mix can get the s =
∑
i∈T bisi, bi =∏

i∈A,i6=j
j
j−i , so it can use s to legally sign trans-

action txi.

5 SECURITY ANALYSIS

This section mainly analyzes the security of Coinlayering,
including strong anonymity, anti-denial service, signature
unforgeability and backward security.
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Theorem 1 (Strong anonymity). In CoinLayering, it is difficult
for an adversary to guess the buyer-seller relationship.

Proof. To enhance the anonymity of Bitcoin owners, coin
mixing system is responsible for cutting off the relation-
ship between seller and buyer thoroughly. For this, to hide
the target transaction A from the adversary, it can make
other transactions that take place simultaneously with A
as the misled items, which consist of the anonymous set.
Apparently, the larger the anonymous set, the stronger the
anonymity is. In addition, suppose that there are N1 buyers
and N2 sellers during the interval that the system completes
a coin mixing. Under ideal condition, for any pair of seller
and buyer, the probability of getting it right is 1/(N1∗N2). In
other words, the upper bound of anonymous set is (N1∗N2).

Based on the above, if the anonymous set of Coin-
Layering can achieve (N1 ∗ N2), it possesses the strong
anonymity. To prove it, we take the following two steps:
(1) the connection between seller and buyers in CoinLay-
ering is less enough and (2) the size of anonymous set
(N1∗N2) is large enough. For the first step, in CoinLayering,
because the adversary cannot detect the User’s choice and
the connection between Mix1 and Mix2 is also cut off by
group signature, their interactive process cannot be directly
observed by the ledger, and this maximizes the difficulty
of guessing the relationship between the buyer and the
seller. One may argue that, once Mix1 and Mix2 collude
with each other or the adversary colludes with a small
number of Users, the guessing probability can be enhanced.
However, considering the Mix selection and economic cost,
the occurrence probability of such situations is very low. For
the second step, because CoinLayering has an effective load
balance result through Mix selection, it can normally run
under the large scale Bitcoin transactions as long as plentiful
of Mixes are involved. To sum up, the strong anonymity in
CoinLayering has been proofed.

Theorem 2 (Anti-denial service). In CoinLayering, any
Mixes who refuse to provide services would be exposed.

Proof. When User sends the timestamps T1, T2 or T3, T4
to a Mix τ , τ normally requires issuing a commitment
to User after accepting the request. However, once τ is a
semi-honest Mix in CoinLayering, three unexpected cases
are exhaustive. (1) If τ does not respond, User can choose
another Mix after the timeout. In this case, τ would not
get any benefit from it except for the waste of time. (2) If
τ denies the mixing service after hosting Bitcoins and reject
to provide a voucher for the User, Supervisor would audit
the number of τ ’s vouchers during the audit phase. In this
case, τ would lose its mixing qualification and be charged
the deposit. (3) If τ provides the User with a voucher, it
refuses to transfer the escrow Bitcoin. The commitment and
voucher will be evidence of the denial of service. In the
context of Blockchain, τ cannot deny its behavior. For the
above, if a semi-honest Mix actively refuses to serve the
User, the Mix can not get any extra benefits and meantime
its malicious behavior would be exposed.

Theorem 3 (Unforgeability). In CoinLayering, the adversary
cannot forge any Mixes′ identities to provide users with false
services.

Proof. In CoinLayering, the group signature is used to cut
off the relationship between Mixes, and the threshold sig-
nature is used to secure the transactions. In this, once an
adversary A forges these two signatures, it can forge Mix’s
identity and defraud its Bitcoins. To prove the unforgeability
of CoinLayering, we just need prove the following subprob-
lems: the group signature is unforgeable and the threshold
signature is unforgeable.

(1) Group signature unforgeability. Assume to the con-
trary that there exists an adversary A who can forge the
group signature with a non-negligible probability P0, un-
der the random oracle model. In CoinLayering, we use
s1i · gis

2
i = yi

H(m||ri) to verify the validity of Mixi’s sig-
nature. For convenience, we term s1i and s2i together as si
and let hi = H(m||ri). In this, to satisfy the above equation,
the main work of A is to search si and hi. To simulate the
searching process, we construct a challengerB to respond to
adversary A’s queries. The whole procedure can be divided
into 3 steps. Step 1: select a Mixi as the forged object. After
A sends the key query OCKey relevant with Mixi to B, B
randomly selects xi ∈ Zp to calculate (pki, ski) = (gxi , xi),
and then let Mixi join the group, in which the group
parameter c is updated by Superivsor. Step 2: acquire the
Mixi’s signature. After A sends a plaintext message m to
B, B uses the Schnorr signature technique σ = (m, s1i , s

2
i )

to compute the m’s signature, where s1i = gri mod pi,
s2i = (H(m||ri) · xi − ri), and ri is a random number.
To acquire more of the Mixi’s signatures, A can choose
different messages and analyze them. Step 3: forge the
Mixi’s signature. After A forges the signature sign{m} and
sends it to B, B verifies whether such signature is valid.
Once the forged signature sign{m} cannot be certified false
through a series of queries, A’s forgery succeed and it can
only be regarded as Mixi. In this case, without loss of gen-
erality, we further assume that A can forge two signatures
(m, ri, hi, si) and (m, ri, h

∗
i , s
∗
i ). Based on them, we can

derive gisi = ri · yhi
i and gi

s∗i = ri · y∗i
h∗
i . Going a further

step, we can use G1 =< g >: xi = (si − s∗i )(hi − h∗i )
−1

to calculate the discrete logarithm xi of yi. However, this
is the Discrete Logarithm Problem (DLP), i.e., there exists
no polynomial time algorithm to search a feasible xi under
given (g, gxi ). This means that such adversary A does not
exist, which contradicts the precondition.

(2) Threshold signature unforgeability. In CoinLayering,
the threshold signature is a combination of ECDSA and
Shamir’s Secret Sharing (SS). TheECDSA signature can be
computed as s = d−1(e+r ·k), where d is the private key of
Mix, and k is the temporary key generated during signature
calculating. Going a further step, by using SS technique, d
and k are divided into sub-keys respectively, and then issue
them to the varied Mixes. Suppose that an adversary A can
control the first t Mixes, and further monitor their sub-keys.
To prove the unforgeability of the threshold signature, we
simulate the threshold signature process, and further certify
that adversary A cannot utilize these t Mixes to recover
the ESCDA signature s. The simulation process is as fol-
lows. After obtaining the t Mixes′ sub-key (d∗1, d

∗
2...d

∗
t ) and

(k∗1 , k
∗
2 ...k

∗
t ), A can use interpolation formula to calculate

R = k∗iG(1 ≤ i ≤ t) and then calculate sub-signature
s∗i = ([d−1]∗i ) · (e+ k∗i ·R) (1 < i < t) through broadcasting
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R to honest Mixes. Considering that ECDSA is a secure
signature technique, to forge the signature s, A can only
resort to the sub-signature si. According to Shamir’s secret
sharing, d and k are t-order polynomials, i.e., only when
more than t sub-keys are collected can A obtain d and k.
Since s is generated by d and k, it is 2t-order polynomial,
and thus A requires collecting 2t si. Because each Mix
stores a sub-key, A needs compromise more than 2t Mixes,
which contradicts the preassumption. Thus, the Threshold
signature cannot be forged.

Theorem 4 (Forward security). In CoinLayering, if the adver-
sary gets Mix’s private key, the system is still safe and trusted.

Proof. In CoinLayering, even if Mix reveals its current pri-
vate key xi to the adversary A, A is also unable to retrieve
the previous information and further reveal User’s privacy.
To prove it, we just need prove the following points: the
forward security of the Mix’s private key and the forward
security of the group signature.

(1) Forward security of the Mix’s private key. In Coin-
Layering, given a Mixi, its private key xi is associated with
the time period j, i.e., xi would change over time. For this,
we utilize xi.j+1 = x2i.j mod (pi − 1) to update the private
key. Because this one-way key updating function is based
on large prime factorization of pi − 1, in the limited time
available, the adversary cannot use the current key xi.j to
calculate the previous key xi.j−1.

(2) Forward security of the group signature. Given a
Mixi, suppose that its private key xij at the time period
j is leaked. If the adversary A tries to forge the group
signature at time period j − 1, it needs make the equation
ri · gisi = yi

2j−1H(m) true through searching two valid
values of both ri and si. According to Theorem 3, only when
the private key xi.j−1 has been acquired can ri and si be
found. Yet, due to the forward security of xij , A cannot
calculate xi.j−1. This means that, the signature at j − 1 is
still secure.

6 PERFORMANCE EVALUATION

In this section, we focus on the proof of scalability in Coin-
Layering. For this, we first use the theoretical analysis to
demonstrate its efficiency. Then, build simulations platform
to perform extensive experiments so as to supplements the
above analysis results.

6.1 Theoretical Evaluation

We use the mathematical analysis to evaluate the com-
putation costs of encryption (En), square operation (S),
modular multiplication (M ), modular exponentiation (E),
hash function (H) and elliptic curve scalar multiplication
(R). Firstly, considering that the main computation work of
Mix is to complete group signature, to measure the Mix’s
load in CoinLayering, we conduct a theoretical evaluation
on the involved group signature. Secondly, to demonstrate
the efficiency, a theoretical evaluation of the entire protocol
is necessary.

(1) In CoinLayering, we combine the Congruence
based Group Signature with Schnorr Signature, termed as
CGSSS. We choose the Forward Secure Group Signature

(FSGS) [29] to compare with ours, both of which are
capable of prevent Mixes from colluding, i.e., have the
same security level. The former uses Mix selection to make
Mixes unable to collude with each other; the latter increases
the interaction with Supervisor in signature generation
stage to prevent collusion.

Table 3 shows the comparison result, which contains five
Stages: Key Update (KU), Member Joining (MJ), Member
Revocation (MR), Signature Generation (SG) and Signature
Verification (SV). Let n be the number of Mix in the signa-
ture. In the key update stage, each Mix needs to update its
own key xi·t+1 = xi·t

2 mod (pi − 1). Because each Mix
is updated at the same time, it is an (S) operation. In
the member joining stage, Supervisor adds each registered
Mix to the congruence, and compute c =

∑k
i=1 yi · Pi · P ′i ,

which is (nE) operations. In the member revocation stage,
Supervisor modifies the public key yi = yi

2 mod pi corre-
sponding to the exit member and recalculates the public key
c, which is (E+nM) operation. In the signature generation
stage, Mix chooses a random number r, and computes
s1 = gr mod pi, s2 = (H(m) · xi − r)(modpi), which is
a (E + M) operation. In the signature verification stage,
Mix calculates s1 · gs2 = yi

H(m) to verify the correctness
of the signature, which is a (2E +M) operation. Compared
with FSGS, CGSSS has advantages in the calculation of
the key update stage and member joining stage. Firstly,
FSGS requires all Users to update their private keys
simultaneously, but CGSSS could allow Users to update
their private keys according to their own requirements,
which can effectively reduce its computational overhead.
Secondly, whenever a newMix joins, CGSSS only requires
Supervisor to recalculate the group public key cnew and
then issue them to the Mixes, but FSGS requires the new
one to interact with all other Mixes, and update their pa-
rameters. In particular, even under the condition that part of
Mixes cannot receive the public key cnew, the interactions
among the remaining Mixes can run normally in CGSSS.
This cannot only reduce the computation cost, but also
minimize the bandwidth overhead. In brief,CGSSS is more
efficient. Especially, as more and more Mixes join in the
Bitcoin marketplace, it has better characteristic of scalability.

TABLE 3
Theoretical analysis and comparison between the group signatures

CGSSS and FSGS

Stages CGSSS FSGS
Key Update S 2S

Member Joining nM n(M + E)
Member Revocation E + nM E + nM

Signature Generation E +M 2E +M
Signature Verification 2E +M 2E +M

(2) We choose two typical schemes to compare with
CoinLayering. Coinparty [10] is a decentralized structure
coin mixing scheme, which also uses threshold signatures
in the scheme. Zerocoin [30] is a centralized structure coin
mixing scheme with excellent privacy protection.

Table 4 shows the computation costs of CoinParty, Ze-
rocoin and CoinLayering. Let n be the number of Mix
in the protocol. In CoinLayering, there is no operation
to encrypt the message. In the registration phase, each
User generates the key yi = gxi mod pi and a knowl-
edge signature ci = H(Time||yi||g||gsiyici), which include
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n(E + H + M) operations. In addition, to ensure the se-
curity of key sharing, Mix needs perform Joint-RSS, which
includes n(3R) operations. In the mixing phase, Mix and
User need to generate group signature s1 = gr mod pi and
s2 = H(m)·xi−r, and meantime verify the group signature
s1 ·gs2 = yi

H(m) twice, which include n(6E+4H+4M) op-
erations. In addition, User blinds the message m′ = m · by2 ,
which includes nE. By adding the above analytical results
together, CoinLayering mainly includes n(8E + 5H + 4M)
operations. Different from CoinLayering, CoinParty needs
spend more time on encryption and elliptic curve scalar
multiplication, and ZeroCoin needs to spend more time on
modular exponentiation. Yet, in terms of security and scala-
bility, CoinLayering has more advantages. Firstly, compared
to CoinParty, although it brings more elliptic curve scalar
multiplication operations, it can guarantee the transaction
security through the secure key sharing, even under the
condition that a large number of malicious nodes share
wrong key sharing. Secondly, compared to ZeroCoin, it has
stronger anonymity. As a centralized scheme, ZeroCoin is
more vulnerable to bandwidth attack, which restricts its
scalability.

TABLE 4
Theoretical analysis and comparison between CoinLayering and others

Operations CoinParty ZeroCoin CoinLayering
Encryption (n2)En 0 0

Modular Multiplication (8n)M (9n)M (4n)M
Modular Exponentiation (4n)E (12n)E (8n)E

Hash (4n)H (n)H (5n)H
Elliptic Curve

Scalar Multiplication (10n)R 0 (3n)R

6.2 Experimental Evaluation
We firstly measured the computation time of CoinLayering-
PA and CoinLayering-PB respectively, including the group
signature and threshold signature. Furthermore, we eval-
uate the overall performance of CoinLayering. Specially,
investigate its computation and storage overheads, as the
number of blocks increases. Calculation time refers to the
actual running time of various operations, including mod-
ular multiplication TM , modular exponentiation TE , hash
TH and elliptic curve scalar multiplication TR. All of the
experiments are performed on the server with Intel 2.6GHz
i7-4720 CPU, 8GB RAM and Windows XP. We use JPBC
(Java Pairing-Based Cryptography Library) library to im-
plement our concerned cryptographic techniques, in which
RSA modulus in the selected accumulator is 1024 bits and
hash function is SHA-256.
6.2.1 On The Performance of CoinLayering-PA
As congruence-based group signature (i.e., CGSSS) is the
main cryptographic technique that is simultaneously in-
volved in the CoinLayering-PA’s registration phase and
mixing phase, we focus on testing its computation time.
According to Section 6.1, such group signature is divided
into five stages: MJ, MR, KU, SG and SV. Fig. 5 inves-
tigates the computation costs at different stages. The ex-
perimental results are consistent with our theoretical eval-
uation results. Compared with the existing secure group
signature FSGS [29], the advantages of CoinLayering-PA
are mainly reflected in the following stages. In KU stage,
compared with CoinLayering-PA, FSGS requires one more
squaring operation, but there is no significant difference in
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Fig. 5. Comparison between CoinLayer-PA and FSGS

their computation costs, because the squaring operation is
lightweight. In MJ stage, because the computation cost of E
is relatively higher, as the Mixes increase, the computation
cost of FSGS is about to get even larger, i.e., the difference
between CoinLayering-PA and FSGS would also become
larger. In SG phase, to ensure security, FSGS requires
Supervisor to perform a E operation, which also increases
the computation cost.

6.2.2 On The Performance of CoinLayering-PB
To secure the Bitcoin transactions between Mixes,
CoinLayering-PB adds threshold signature to CoinLayering-
PA. In this, we first test the computation costs of threshold
signature in CoinLayering-PB. Then, measure the computa-
tion time of CoinLayering-PB’s entire process and compare
it with other protocols (including CoinParty [10] and Zero-
coin [30]).
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Fig. 6. Computation costs at different stages in threshold signature

In CoinLayering-PB, the threshold signature technique
are mainly divided into the following stages: Security Secret
Sharing (SSS), Escrow Address Generation (EAG), Total
Escrow Address generation (TEA), Request Signature Key
(RSK), Sub-Signature Generation (SSG), Threshold Signa-
ture Generation (TAG). In this, we investigate the compu-
tation costs at different stages, and the results are shown in
Fig. 6. We can obviously observe that SSS and RSK stages
take more time, but this does not affect the efficiency of
transaction. The reasons can be stated as follows. Firstly,
although Joint-SSS operation with high computation cost
is required in SSS stage, it only requires performing once
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during the Mix registration. Secondly, since In − SS op-
eration with high computation cost is the main work of
RSK stage, CoinLayering-PB allows the Supervisor with
abundant computing resources to perform it, instead of
those over-loaded Mixes. This can effectively ensure the
efficiency of transactions. From the above, even in the face
of large scale transactions, Coinlayering-PB is scalable.

Coinlayering-PB mainly contains the following opera-
tions: M , E, H and R. For the convenience of functional
analysis, we investigate the total running time of each op-
eration, and the results are shown in Fig. 7, in which SUM
denotes and the aggregation time of all operations. We can
summarize the following interesting observations: (1) the
computation cost of Coinlayering-PB is between CoinParty
and ZeroCoin. This is because R operation would bring
about the high computing overhead. In CoinLayering, R
operation is performed 4 times, while 10 times in Coin-
Party. As for ZeroCoin, it is based on discrete logarithms
and thus does not require R. (2) The computation cost
of CoinLayering-PA is almost equal with CoinLayering-PB.
This means that, the threshold signature is lightweight, and
does not take up Users′ transaction time.
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Fig. 7. Comparison between Coinlayering-PB and other protocols

6.2.3 On The Performance of CoinLayering
As the number of transactions increases, performance over-
head of CoinLayering also grows. To ensure that CoinLay-
ering can cope with the large scale Bitcoin transactions, here
we focus on evaluating its scalability. Firstly, we investigate
how the computation costs of varied entities (including
User, Supervisor, Mix1 and Mix2) scale with an increas-
ing number of transactions. We separate Mix1 from Mix2
during test execution, because their operations are different
in mixing process. And we test the overall performance of
CoinLayering and meantime compare it with CoinParty [10]
and Zerocoin [30]. Secondly, considering that the number of
network trips is an important factor affecting task execution
time, we compare the communication amounts in the var-
ied schemes. Thirdly, considering that the multiple copies
of redundant storage in blockchain make it potential for
the scalability issues, we aims to investigating the storage
cost through varying the number of transactions. For the
discrete logarithm-based signature and elliptic curve-based
signature, we respectively fix 1024-bit and 256-bit.

Fig. 8 shows the computation costs of varied entities
worked as a function of the number of transactions. For any
entity, we measure its computation time through accumulat-
ing the running time of all its linear pair operations. From

the evaluation results, we made the following observations.
Firstly, it is evident that the computation cost of User is low
and its curve is almost flat. The reason is that, for the User,
only a few operations are required to perform in CoinLay-
ering. In general, its total computation cost is 2M +3E+H ,
which includes registration costM+2E+H (mainly involve
public key generation and knowledge signature) and mixing
cost E +M (involve message blinding). Secondly, though
the computation cost in Mix1 is slightly higher than Mix2,
their difference is not so much (belong to the same order
of magnitude). This is because, judging by computational
overhead only, compared to Mix1, Mix2 needs to only
one more M . Thirdly, with the increasing of transactions,
the computation cost of Supervisor is also rising up. The
increase of transactions requires more registered Mixes,
which results in the surge of M operations. From the above,
we can conclude that, in the face of large scale transactions,
Supervisor is more likely to be the bottleneck of the system.
However, once we migrate it to cloud platform with super
capacity, such issue would be well solved.
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Fig. 9 shows how the overall computation cost varied as
the number of transactions increases. For ease of comparison
between the other schemes, we measure overall computa-
tion time through accumulating the trading time of each
entity. In the simulation, trading time just refers to the spent
time during mixing phase, considering that registration cost
is produced only when the system is initialized or new User
joins. The evaluation results are summarized as follows.
Firstly, no matter CoinLayering, Coinparty or Zercoin, the
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Fig. 10. Communication amount by increasing the number of transactions.

overall trend of its computation cost is obviously rasing up,
with the increasing of transactions. In CoinLayering, accord-
ing to the conclusion from Fig. 8, Supervisor is the major
contributors to the increase of overall computation cost. For
any new User, in Coinparty, other ones have to interact
with it so as to generate the new signature, which adds
additional E + M operations. Zercoin requires all Mixes
to constantly interact with the new User and perform E
operation. Secondly, with the increasing of transactions, the
computation cost of CoinLayering is higher than Coinparty
and Zercoin, which is slightly different from Fig. 7. This
is because, CoinLayering wouldn’t require significant M ,E
and H operations in trading situations, and meantime its
most time-consuming operation R takes place in the regis-
tration phase, which would not take up the trading time.

Fig. 10 shows the evaluation results for communication
amount (i.e., the number of network trips), which is worked
as a function of the number of Users and the number of
transactions. It is clear that, compared to CoinParty, both
ZeroCoin and CoinLayering require less communication
amount. The reason can be stated as follows. ZeroCoin
adopts zero-knowledge proof technology and thus only
requires three communications for one transaction; on this
basis, CoinLayering adds one more interaction between two
Mixes; CoinParty requires significant communications to
generate threshold signatures and escrow addresses.
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Fig. 11. Storage costs by increasing the number of transactions.

Fig. 11 shows how the storage cost changed as the num-
ber of transactions increases. In coin mixing, the signatures
and other credentials would be recorded on the chain. It
is evident from the figure that the storage requirements
in CoinLayering is higher than CoinParty, but far lower

than Zerocoin. This is because CoinParty adopts the elliptic
curve based threshold signature with the smaller length,
but CoinLayering still requires a group signature, besides
the 256-bit threshold signature. In ZeroCoin, it adopts the
knowledge signature whose length is the same with the
group signature of CoinLayering. In addition, it needs to
first convert Bitcoin to 1024-bit Zerocoin, which enforces the
need for the storage.

7 CONCLUSION

In this paper, we proposed an efficient coin mixing scheme
for large scale Bitcoin transactions. The building blocks
of our proposed CoinLayering scheme are as follows: a
User−Mix−Supervisor based system model (that allows
User to randomly select two Mixes to respectively execute
the Bitcoin holding and Bitcoin trading actions), a Mix
selection algorithm (to ensure task completion), and two
security coin mixing protocols (to mitigate the risk due to
misbehaving middlepersons and Supervisor). Our security
and performance evaluations demonstrated the utility of
CoinLayering.
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APPENDIX A: INCENTIVE STRATEGY

To attract more honest Mixes, CoinLayering pays several
Bitcoins as the profit to them. For a User, with the increase
of the transactions, the cost to pay for those mixing service
would also grow linearly. But, this would bring severe
economy burdens for this User, and further decrease the
incentive to mix coin. In this, we provide an incentive mech-
anism termed as CoiInc, in which User would acquire extra
rewards as long as it persistently utilizes CoinLayering.

Only if the User continuously purchases the mixing
service can its costs be reduced by Supervisor. Given a time
interval Td, we term the User that continuously purchases
more than two mixing services during Td as the contin-
uous mixing User. In this, our proposed CoiInc contains
two steps: applying for incentive subsidy and granting for
incentive subsidy. The details can be depicted as follows:
Step 1: When User purchases the coin mixing service more

than once, it firstly performs the operation tx2d : I →
E1. And then calculates the difference Ts between
the current transaction time and the last transaction
time. If Ts ≤ Td, the User submits the tx2d record to
Supervisor and applies for incentive subsidy.

Step 2: Upon receiving the request, Supervisor firstly ver-
ifies the tx2d and record its input User’s address
I . Then, use I to search the last transaction tx1d
in BB. Meantime, judge whether the User I is
eligible for the incentive subsidy through computing
the time difference between tx1d and tx2d. If it does,
Supervisor computes the amount of its incentive
subsidy f = BC × b and then sends them to I ,
where BC denotes the total value of the current
transaction, b denotes the proportion of incentive
subsidy in BC . Normally, b is proportional to the
number of mixing times during Td.

It is worthy of note that, although Supervisor can veri-
fies the input User’s address during the second step, it is in-
capable of watching the privacy of seller-buyer relationship
and thus cannot decrease the anonymous set. The reason is
that, during the interaction with Mix2, the identity of User
is different from that it interacts with Supervisor. Going
a further step, Supervisor is unable to guess the buyer
associated with Mix2, let alone the connection between the
seller and buyer.

APPENDIX B: A MORE SECURE GROUP SIGNATURE
TECHNIQUE

In this section, we mainly illustrate how to embed the
existing secure group signature technique [25] into our
proposed CoinLayering. To prevent the Mix from watching
the User’s information in secret, it requires the value of
elements in group signature to be changed every time. The
details can be depicted as follows.
Step 1: Supervisor generates the group’s private key

(p, q, d), where p and q are two random primes.
Then, generate group’s public key (n, e), where
n = p × q and e × d = 1 (modn). At last, assign
a random prime number pi for each Mixes and
meantime send it to the corresponding Mix.

Step 2: When Mixi receives (g, n, pi) from Supervisor, it
calculates theMixi’s public key yi = gxi mod n and
sends it to Supervisor, where g is the generator of
cyclic group, and xi is Mixi’s private key .

Step 3: After receiving yi, Supervisor constructs the con-
gruence c = yi mod pi and then saves c’s value in a
private way.

Step 4: Mixi uses its private key xi to sign the message M .
Then, calculate its signature si = h(M ||ξ) ·xi mod n
and send (M, ξ, si, pi) to Supervisor.

Step 5: Supervisor needs verify whether the signature is
valid through yi = c mod pi and h(M ||ξ) =
syii mod n. If valid, it calculates group signa-
ture C = (h(M ||si||r1||r2))d, where r1 = pi +
αh(M ||ξ) mod n and r2 = (αh(M ||ξ))e mod n.
And then, send (M, ξ, si, C, r1, r2) to Mixi.

Step 6: When a coin mixing deal starts, Mix1 firstly sends
the group signature (as a voucher) to User. To verify
this group signature, User then sends it to Mix2. If
Ce = h(M ||si||r1||r2), it is valid.

APPENDIX C: AN ILLUSTRATION EXAMPLE

In this section, for easy understanding of CoinLayering,
we present illustrative examples for the main primitives
(including Mix selection and coin mixing protocol). Under
normal circumstances, the entire workflow of CoinLayering
can be stated as follows.

TABLE 5
The Mixes’ attribute scores

Mixi ~A1
~A2

~A3
~A4

i=1 60 95 60 95
i=2 70 85 70 85
i=3 90 75 90 75
i=4 95 65 95 65
i=5 55 80 55 80
i=6 75 75 75 75
i=7 80 60 80 60
i=8 45 65 45 65
i=9 72 62 72 62
i=10 80 50 80 50

Step 1: The owner of Bitcoins demonstrates to Supervisor
that it is fully qualified for a Mix. When successful,
it generates a private key. Assume that there are 10
Mixes registered in Supervisor.

Step 2: Supervisor evaluates each Mix and the relevant
attributes are shown in Table 5. And meantime,
Supervisor records the Mixes′ keys and enables
them to generate signatures.

Step 3: WhenUser initiates coin mixing, it first findsMixes
that meets its requirements, i.e., sends its require-
ments ~w = (0.1, 0.1, 0.2, 0.6) to Supervisor.

Step 4: Supervisor firstly analyzes the current queuing sit-
uation and calculates the least number of candidate
Mixes k = 3 and average queue length LQ = 5.
And then, use Mix selection strategy to recom-
mend 3 appropriate Mixes, whose attributes are
M1 = (60, 95, 60, 95),M2 = (70, 85, 70, 85),M3 =
(90, 75, 90, 75).

Step 5: User randomly selects Mixi recommended by
Supervisor and obtain its queue length Li. If Li <
LQ, Mixi can be specified as Mix1 or Mix2.
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Step 6: User utilizes identity U to send T1(23), T2(38)
to Mix1, and meantime utilizes identity U∗ to
send T3(53), T4(68) to Mix2. When accept the re-
quests, Mix1 and Mix2 respectively send commit-
ments V1={sign{23||38||40ibuLn6jFDn3ZV F}x1
and V2=sign{53||68||OBtIKydiEpkkGjzw}x2.

Step 7: User uses identity U to build tx1 :
I → E1 before T1 and sends m′ =
(O||ID2||tfGzh3NFYH0WDugN) · by2 to Mix1.

Step 8: Mix1 checks transaction tx1 and sends W =
sign{m′}x1 to U before T2.

Step 9: User utilizes identity U∗ and sends W to Mix2
before T3.

Step 10: Mix2 verifies W and builds tx2 : K2 → O before
T4. After the owner of addressO receives the trans-
action tx2, the User′s transaction is completed.

Step 11: supervisor conducts an audit for each Mix every
time t, which is used to check whether the number
of transactions hosted by Mix is consistent with
the number of issued certificates W .

Step 12: During the audit on supervisor, Mix1 builds the
transaction tx3 : Ei → E, and Mix2 initiates
threshold signature si = ([d−1]i) · (e + ki · R) on
transaction tx4 : E → K2 (including mixing fees).
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