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Abstract—The Internet of Vehicles (IoV) environ-
ment consists of a number of latency-critical and data-
intensive application (e.g., real-time video analytics).
In this paper, we posit the potential of leveraging the
sixth generation (6G) mobile networks to minimize
communications delay, particularly for latency-critical
task execution. In particular, 6G-enabled network in
boxes (NIBs) deployed in the vehicles can communicate
in real-time with the edge servers or the NIBs in
other vehicles. Although, NIBs are capable of pro-
viding dynamic and flexible computing resources to
support real-time IoV services, there are significant
energy costs associated with the communication and
computing activities. Seeking to achieve an optimal
balance between energy consumption and time cost
during service migration, we design a NIB task mi-
gration method (NTM) for IoV in this paper. In our
approach, the IoV framework is designed and the
routing mechanism is established. The Strength Pareto
Evolutionary Algorithm (SPEA2) is then utilized to
determine the migration strategy. Findings from our
experiments demonstrate the reliability and efficiency
of our proposed approach.

Index Terms—IoV, Edge computing, 6G, Network in
boxes, Service migration.
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INTERNET of vehicles (IoV) are increasingly becoming
mainstream, as cities and nations become more digi-

talized and interconnected. A typical IoV setup includes
participating smart vehicles (equipped with various tech-
nologies such as sensors, micro-controllers and intelligent
cameras) and other supporting infrastructure (e.g., road
side units, and IP-based CCTVs) [1], where vehicles and
other smart entities communicate with each other. To
support the computational demands of an IoV network,
data collected from vehicles and other smart entities are
sent to the cloud for processing.

However, many of the tasks in an IoV setting are
time- and delay-sensitive tasks (e.g., traffic navigation and
danger notification), and hence there have been attempts
to utilize edge computing (EC) in IoV settings, where most
of the time- and delay-sensitive tasks can be performed
at the edge servers. Examples of edge computing-based
approaches include those of [2]–[4]. There are various
design considerations in such edge computing-based ap-
proaches. For example, one need to consider the allo-
cation and coordination of resources between edge and
cloud servers. Hence, researchers such as [5], [6] have
proposed approaches to facilitate service migration. In
addition, some researchers utilize the cache management
policies to achieve better EC performance [7]. Although,
most of the existing approaches are designed to facilitate
service migration, focusing on the time cost or energy
consumption. However, considering sixth-generation (6G)
mobile networks, which achieves 10 to 100 times data
rate, lower latency, and wider coverage than the fifth-
generation mobile networks, the migration rate and delay
can be acceptable with 6G, facilitating the interconnection
of vehicles [8]–[12]. We posit the importance of designing
a service migration method to optimize both energy con-
sumption and time cost, as well as utilizing 6G to support
IoV communications.

There are, however, challenges associated with a 6G-
enabled IoV deployment. For example, how to ensure the
users’ quality of experience during service migration is
not adversely affected by the migration, and how to min-
imize the energy consumption during service migration?
To address these issues, the strength Pareto evolutionary
algorithm (SPEA2) was used to optimize energy usage
and migration time costs. The multiple criteria decision
making (MCDM) and the technique for order preference
by similarity to an ideal solution (TOPSIS) are then used
to evaluate the solutions of migration strategies.
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Fig. 1: A simplified use case

The rest of this paper is organized as follows. The
system model and problem formulation are presented in
the next section. The third and fourth sections present
our proposed service migration method for IoV and simu-
lation experiments and comparison analysis, respectively.
Finally, the conclusion is presented in the last section.

II. System Model and Problem Formulation
In this section, we present the system model for service

migration in IoV, which comprises both energy consump-
tion and time cost models.

A simplified use case for the task migration method
(NTM) is shown in Fig 1, which consists of a cross junc-
tion (P ), some edge servers (ES = {es1, es2, . . . , esP }),
and N NIBs in the moving vehicles (NIB =
{nib1, nib2, . . . , nibN}). We assume each edge server con-
tains a server with sufficient number of VM instances to
execute service migration, and there are W VM instances
in each NIB (R = {r1, r2, . . . , rW }), and Q VM instances
in each edge server (S = {s1, s2, . . . , sQ}). We also denote
X as the migration strategy, which is mathematically
expressed as X = {x1, x2, . . . , xN}.

A. Time Consumption Model
As the significant elements for evaluating the strategy,

the time consumption of the NIBs and ESs principally
include the transmission, execution and feedback time.
The execution time expenditure produced by cm in NIBs
is calculated by

texec(X) =
N∑

n=1
In(X) · δm∑W

w=1 im,w · k
, (1)

where δm is the task size of cm, k is the computing power
of the VM instances in each NIB, which is related to the
CPU frequency, and In(X) is a binary variable to estimate
whether cm is existed in nibn, which is calculated by

In(X)=
{

1, if cm is existed in nibn,
0, otherwise. (2)

and im,w is the dimension to estimate whether cm occupies
the w-th rw on nibn, which is calculated by

im,w=
{

1, if cm occupies the rw in nibn,
0, otherwise. (3)

The migration time is calculated by

transm(X) =
N∑

n=1
hm

n (X) · ωm

θ
· (λ− 1), (4)

where λ is the number of NIBs that transferred from nibm

to nibm′ , θ is the data transmission rate between NIBs,
and ωm is the data size of cm. hm

n (X) is a binary variable
employed to estimate whether cm needs to be migrated,
which is measured by

hm
n (X)=

{
1, if cm needs to be migrated to nibn,
0, otherwise.

(5)
After the transmission and execution of the services

migrated, the processed outcomes should be fed back to
the vehicles, which is given by

feedm(X) = ωm′

θ
· λ, (6)

where ωm′ is the datasize of Feedback results.
The execution time of cm in ESs is calculated as

t′exec(X) =
N∑

n=1
I ′n(X) · δm∑Q

q=1 im,q · g
, (7)

where g is the computing power of VM instances in each
ES and I ′n(X) is a binary variable to estimate whether cm

is existed in esp, which is calculated by

I ′n(X)=
{

1, if cm is existed in esp,
0, otherwise. (8)

and im,q is the dimension to estimate whether cm occupies
the sq in esp, which is calculated by

im,q=
{

1, if cm occupies the sq in esp,
0, otherwise. (9)

The migration time for transiting the service cm from
nibn to esn is calculated by

trans′m(X) =
P∑

p=1
Hm

p (X) · ωm

µ
· (λ′ − 1) + ωm

θ
, (10)

where µ is the migration rate between NIBs and ESs, λ′
is the number of ESs that transferred from nibm to esp. A
binary variable Hm

p (X) is employed to estimate whether
cm needs to be migrated, which is measured by

Hm
p (X)=

{
1, if cm needs to be migrated to esp,
0, otherwise.

(11)
The feedback time of processed services c′m is calculated

by
feed′m(X) = ωm′

θ
(λ′ − 1) + ωm′

µ
, (12)
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Therefore, the total time consumption of the service
migration can be calculated by

T (X) =transm(X) + trans′m(X) + texec(X)
+ t′exec(X) + feedm(X) + feed′m(X),

(13)

B. Energy Consumption Model
To the service migration strategy, the energy cost is

a significant index. The energy expenditure produced by
active VM in NIBs is calculated as

Eemp(X) =
N∑

n=1
In(X) ·

M∑
m=1

W∑
w=1

im,w · texec(X) · ϕ, (14)

where ϕ is the power rate of active VM in NIBs.
The energy expenditure produced by unused VM in the

NIBs is calculated by

Eunemp(X) =
N∑

n=1
In(X)·

(
W −

M∑
m=1

W∑
w=1

im,w

)
·texec(X)·δ,

(15)
where δ is the power rate of the unused VM in NIBs.

The energy consumed in the data transmission process
between the NIBs is given by

Etran(X) = transm(X) · pm (16)
where pm denotes the transmission energy consumption
power between the NIBs.

The energy cost of active VM instances in ESs is
calculated by

E′emp(X) =
N∑

n=1
I ′n(X) ·

M∑
m=1

Q∑
q=1

im,q · t′exec(X) · γ, (17)

where γ is the rate of work of the active VM in ESs.
The energy cost of the unused VM in ESs is calculated

by

E′unemp(X) =
N∑

n=1
I ′n(X)·

(
W −

M∑
m=1

Q∑
q=1

im,q

)
·t′exec(X)·ξ,

(18)
where ξ is the power rate of the unused VM in ESs.

The energy consumed in the data transmission process
between the NIBs and ESs is given by

E′tran(X) = trans′m(X) · p′m (19)
where p′m denotes the transmission energy consumption
power between the NIBs and ESs.

Hence, the energy expenditure produced by the service
migration is calculated as

E(X) =Eemp(X) + Eunemp(X) + E′emp(X)
+ Etran(X) + E′unemp(X) + E′tran(X),

(20)

C. Problem Formulation
The optimization objective of this paper is consisted of

the minimum of consumption of the energy and time of the
service migration. The formalized problem is described as

minT (X),minE(X) (21)

s.t.
M∑

m=1

W∑
w=1

im,w ≤W (22)

III. NTM Design
In this section, the NTM firstly using SPEA2 to deal

with the multi-objective optimization problem. Then,
NTM executes the optimization process by TOPSIS and
MCDM.

A. Solution Generation Using SPEA2
SPEA2 has superior robustness and excellent capac-

ity which is conducive to handle multifarious problems
to generate the best solution [13]. With the utilization
of the new archive truncation method, SPEA2 ensures
the retention of boundary values and accuracy of the
estimation. Due to the efficiency of SPEA2 in dealing
with the multi-objective problem, SPEA2 achieve better
performances in the service migration problems than other
genetic algorithms and evolution algorithms.

After determining the optimization models, the best
strategy for service migration in IoV based on SPEA2
is looked for. With the acquisition of the optimal mi-
gration strategy, NIBs reserve resources to achieve the
best migration results according to the optimal migration
strategy. NTM is designed based on the SPEA2, and the
optimal service migration strategy is obtained by using
TOPSIS and MCDM. The reason of using SPEA2 is that
SPEA2 is capable of uniting with any clustering program
to decrease to the scale of the non-dominant solutions with
maintaining the integrity of the characteristics.

Firstly, the services which are needed to be migrated
are coded. The migration strategy are formed as the
chromosomes in the population. Suppose that the NIB
which execute the migration process regard as the gene,
and each gene ti is set as {1,2, . . . , I}. The best strategy,
which is regarded as an superior individual, is calculated
through the optimization process.

Then, to evaluate the strengths and weaknesses of the
individuals, the fitness function is regarded as the decision
criteria. (10) and (15) represent the energy consumption
and the time cost, which are constituent parts of the fitness
function. In addition, (17) shows the constraint.

The definition of the relevant parameters are given in
the initialization process. About all, the optimal migration
strategy is represented by the individual, and the scale
of individual is the representation of the quantity of the
service. In addition, the population size of the initial
population set Q is M , and the initial archive Q0 has the
size M0. The max interaction is n. Q(n,M) represents the
n-th population set. Besides, the probability of variation
is denoted as QV . The crossover probability is denoted as
QC .

In order to create a new chromosome with superior char-
acteristics, the crossover operation merges the two differ-
ent parental generations by complicated commutable pro-
cesses. Firstly, the crossover probability QC is employed to
choose a parental crossover place, and two associated genes
surrounded the place are interchanged. Then, two new
chromosomes are created around the place. Furthermore,
with constant convergence, the probability of mutation
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QV implicates that the filial generation doesn’t generate
a better strategy than the parent.

B. Solution Evaluation Using TOPSIS and MCDM

TOPSIS is a sorting method to approximate the ideal
solution. It evaluates the relative merits and demerits
among the existing objects by sorting the limited evalu-
ation objects according to the proximity to the idealized
target [14] [15]. According to the model, two decision
objectives are represented by T (X) and E(X), and in
TOPSIS, the division of the ideal solution and nonideal
solution is the premise of optimal solution selection.

By the dimensional Euclidean distance, the each alter-
native for the non-inferior solution is calculated as

D+
i =

√
(Ti − Tmin

i )2 + (Tmax
i − Ti)2

, (23)

Similarly, D−i can be calculated by

D−i =
√

(Ei − Emin
i )2 + (Emax

i − Ei)2
, (24)

With the intention of synthetically considering the ideal
solution and the nonideal solution, the comprehensive
evaluation index s is introduced. S is calculated by

Si = D−i
D+

i +D−i
, (25)

Finally, the optimal solution OS in the solution set is
selected by

S = max [Si] , (26)

s.t. WT ,WE ∈ [0, 1],
WT +WE = 1 (27)

In Algorithm1, we formulate the model of aggregat-
ing function and conduct the normalization through the
TOPSIS and MCDM. First of all, the NIB data set and
service set are input to process. Then, the function of time
cost and the energy consumption is calculated (Line 3).
In addition, the fitness function and non-inferior solution
are calculated (Line 8,9). Finally, the least consumption
criterion is confirmed. This process is repeated until the
end of the iteration. Ultimately, the best migration S
strategy is output.

C. Complexity Analysis

For the proposed algorithm NTM, the time complexity
of the fitness calculation process is O(N2 logN), where
N is the population size. The worst time complexity of
the environment selection is O(N3), and the number of
operations that the filial generation needed is O(NV ),
where V represents the amount of the control variable.
Therefore, the computation complexity of NTM is O(N3).

Algorithm 1 Service migration using NTM
Require: NIB,C
Ensure: The optimal migration strategy S

1: n=1
2: while i ≤ I do
3: Evaluate the function by (13) and(20)
4: i = i+ 1
5: end while
6: for i=1 to I do
7: Calculate Ti and Ei

8: Determine the non-inferior solution
9: Calculate the alternative for the non-inferior solu-

tion by (23) and (24)
10: Choose the optimal strategy S by (26)
11: end for
12: return S

D. Method Review
The purpose of seeking the optimal migration strat-

egy is to achieve the minimum migration time cost and
the energy consumption of the NIBs and ESs. In the
first place, the genetic problem are abstracted from the
model. In addition, the individuals are evaluated with the
employment of the fitness function. The constraints are
beneficial to the convergence of the individual. Afterward,
the advantageous individuals are elected in the match
pool during the election process. Due to the high elitism
intensity and the boundary solutions, NTM achieves well
convergence. What’s more, with the intention of generat-
ing new individuals, the mutation and crossover process
guarantee the variety of the filial generation. Ultimately,
the optimal migration strategy is generated through TOP-
SIS and MCDM. The overall process of the NTM is shown
in Fig 2.

IV. Experiment

In this subsection, a series of complicated simulations
and experiments are conducted to get the assessment of
the performance of NTM.

A. Experiment Initialization
In the experiment, the NTM is executed in personal

computer that has the configuration with the Intel Core
i7-10750H processor, 16GB memory and 1TB ssd. The
size of services is randomly selected in [0.5, 0.8] GB. The
processing power of NIBs and ESs are set as 200 MHZ
and 1 GHZ, respectively. The power rate of active and
unused VM in NIBs is set as 50 W and 30 W. The power
rate of active and unused VM in ESs is 80 W and 40 W.
The transmission rate between NIBs and ESs is set as 600
Mb/s and that between NIBs is set as 800 Mb/s. With
the intention of protecting the fairness and variety of the
experiment, three methods besides NTM are employed.
The brief introductions of the other methods are as follows.
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Fig. 2: The overall process of the NTM
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1) Benchmark: Before migrating to the target NIB, the
service first travels to the nearest NIB. If the com-
puter resources of the nearest NIB are insufficient to
meet the requirements, service is transferred to the
next NIB with sufficient computing resources.

2) First Fit Decreasing (FFD): After the traversal
search of the NIB, the service migrates to the NIB,
which is the first fit. If the target NIB possesses
enough computing resources, the service will migrate
to it. [16].

3) Best Fit Decreasing (BFD): After the traversal re-
search of the NIB, the service is intended to migrate
to the NIB, which is the best fit. If the target NIB
possesses enough computing resources, the service
will migrate to it. This process will repeat until the
migration ends [17].

B. Comparison Analysis
The experiment results of the Benchmark, FFD, BFD,

and NTM are compared and analyzed. Migration time cost
and energy consumption are the key indicators to evaluate
the performance of NTM.

The energy cost of the service migration contains the
active VM instances and unused VM instances in NIBs and
ESs. The consumption of the active and unused VM should
be considered firstly. The Fig3 illustrates the comparison
of the total energy consumption in the service migration
through Benchmark, FFD, BFD, and NTM with diverse
service scales. It can be seen that the energy consumption
increase constantly with the growing services.NTM is the
best solution that consumes the least energy, and Bench-
mark produces the most energy consumption because it
consumes a great deal of energy during the upload period.
When the number of services is 30, the four methods
achieve similar performance in terms of total NIBs energy
consumption, which is because the service scale is small,
and the advantages of the NTM cannot be well-reflected.
And when the service scale is 150, NTM exceeds the other
methods, and the improvements compared to Benchmark,
FFD and BFD are 44.29%, 26.42% and 31.58%, respec-
tively.
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Fig. 3: Total energy consumptions of the NIBs
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Fig. 4: The energy consumption of the NIBs

In Fig4, the energy expenditure produced by the active
and unused VM instances with diverse service scales are
compared. In the Fig4(a), with the increase of the service
scale, the energy consumption of the active VM in the
NIBs increases. For the Benchmark method, the comput-
ing services are migrated to the nearest NIB firstly until
migrating to the target NIB, whcih causes the consump-
tion during transmission. The FFD migrates the comput-
ing services to the NIB which is first fit, and BFD migrates
the services to the NIB, which is the best fit. Benchmark
consumes the maximum energy, and NTM consumes the
least energy. Fig4(b) shows the energy consumption of the
unused VM in the NIBs. NTM consumes the least energy,
and as the increase of the service scales, the consumption
of FFD and NTM verge to the same. When the service
scale is 30, the four methods achieve nearly performances
in the light of energy consumption of unused VM in NIBs.
Benchmark exceeds FFD and BFD due to the nearest
selection mechanism. When the number of services is
growing to 120, NTM achieves the best performance and
improvements compared to Benchmark, FFD and BFD are
46.15%, 35.27% and 23.53%, , respectively.

Similarly, the energy consumption of the ESs consists
of the active and unused VM instances in the ESs. Fig6
illustrates that with the increase of the service scale, the
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Fig. 5: The energy consumption of the ESs

energy expenditure produced by the four method increase.
On the other hand, the cost of NTM is the least and verges
to harshness. Taking the performance contrast under 120
services as an example, NTM exceeds Benchmark, FFD
and BFD, and the improvements are 16.04%, 11.76% and
12.11%. Fig5(a) shows that energy consumption of the
active VM instances with the four methods all increase
as the increasing of number of vehicles. The BFD spends
the most energy because it trends to find the best next
nodes, and the NTM costs least. From Fig5(b), with the
increase of the service scales, the energy cost of FFD
exceeds the Benchmark due to the selection strategy, and
the performance of NTM is superior.

Fig7 illustrates the contrast of the migration time cost
of the four methods with various service scales. When the
service migration is executed, the time consumption of the
migration is capable of bearing the identity of criterion of
evaluating the performance of the migration strategy. The
FFD always chooses to migrate the service to the first
fit NIB without consciousness of decreasing the migration
time consumption. In addition, BFD aims at migrating
the service to the best fit NIB and without regard to the
time consumption. Since the migration time consumption
is the optimization objective of NTM, NTM performs well
in decreasing the time consumption. When the number of
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Fig. 7: Comparison of the migration time consumption

the services is 30, the performance of four methods in time
consumption are not too different, and NTM even costs
more time than the other three methods. But with the
growth of service scale, NTM achieves relatively excellent
performance in terms of time consumption. Taking the
performances of four methods with a service count of 150
as an example, NTM exceeds the other three methods and
the improvements of NTM compared to Benchmark, FFD
and BFD are 22.08%, 23.07% and 29.41%, respectively.

V. Conclusion
This paper proposed a NIB task migration method for

the 6G-enabled IoV network to support latency-critical
and data-intensive tasks. We also evaluated the perfor-
mance of the proposed approach using experiments to
demonstrate utility. However, this is not ideal because nu-
merous factors can affect the performance and security of
communications and task transfer activities in a real-world
scenario. Hence, in the future, we intend to implement a
prototype of our proposed approach for evaluation in a
more realistic setting.
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