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Abstract. Convolutional Neural Networks (CNN) have revolutionized
image recognition technology, and has found uses in various non-image
related fields. When dealing with non-natural data, where the ordering of
various parts of a data sample is not dictated by nature, it is known that
a model trained on certain orderings of the data performs better than
models trained on other orderings. Understanding how to best order the
training data for improving CNN performance is not well-studied. In
this paper, we investigate this problem by examining several different
CNN models. We define a functional algorithm for ordering, show that
order importance in CNNs is model dependent and that depending on
the model, statistical relationships are an important tool in establishing
order with better performance.

Keywords: Convolutional Neural Networks · Data preparation ·
Security · Malware detection · Cloud IaaS · Deep learning

1 Introduction

Recent explosion in CNN architectures has pushed computer image recogni-
tion [8] to an art form. It has provides a variety of options depending on the
need [5]. They are also used in non-image related fields, so understanding how
they work with images should help us leverage their use in these other areas.

It has been shown that entropy can be used to both increase detail [24] and
reduce noise [2]. By examining the entropy of an image, for example, the dog in
Fig. 1a, and comparing the activation values found by analyzing it with a shallow
CNN, Fig. 1b, we can see it identifying patterns in entropy. We hypothesize that
these new CNN models are finding novel ways of making identifiable information
out of these patterns of entropy.

Exploration has been made in using CNN in fields other than image classi-
fication. Text [14], sound samples [4], and medical diagnostics of DNA [20] are
examples of how this technology has other uses. Oftentimes these sources of data
have a naturally defined order such as the acoustical waves in a sound or DNA in
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(a) Image with a 3 wide Entropy of Primary
Colors

(b) CNN Level-2 Activations of Image

Fig. 1. Image processed by CNN

a sequence. But many times these data sources do not have a naturally defined
order, for example, a series of sensors on an automated vehicle [22]. In most
“non-natural” cases, the researcher defaults the matrix order to a structural
relationship between features usually established by an arbitrary specification.
We use the term “non-natural” as a definition of ordering sources that were not
defined in nature. This is opposed to “unnatural” which leads to the idea that
they were ordered by something super-natural.

Our previous research showed that if high accuracy and precision are desired,
using a non-natural structural order is not preferred when training a shallow
convolution neural network model. We found that using statistical relationships
as a basis for order does improve performance. We hypothesize that this holds
true for the other styles of CNN architectures.

A particular subset of non-natural data that has gained interest is in detecting
security issues. For example, raw IP traffic [16,23], computer process metrics
[1], and industrial sensors [10] are examples where researchers are evaluating
the use of CNN in security-related fields. The ability for a CNN to examine a
large number of features from which extract the important subsets is what make
CNN successful. Properly compiling various sources of data in a structure for a
deep learning algorithm to analyze should be of concern when using CNNs.

Security can have many forms of data, all from a single source, for example,
computer metrics [1]. Some are integers, others floats, include strings, all with
various ranges. In a different scenario, a researcher could include audio, video, and
or bio-metric packages to augment and enrich the source. We hypothesize that how
the data is structured and prepared is imperative to use CNN successfully.
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The contributions of this paper are:

– Show that ordering of rows and columns has a major impact on the perfor-
mance of CNN, but how much is model dependent.

– Define a methodology for ordering the data by statistical relationships.
– Show that using statistical relationships to define matrix order is a strong

predictor of a good performing order, but the exact statistical relationship
can depend on the model of CNN.

– Increase the state of malware detection technology by providing data prepa-
ration tools that improve CNN performance when analyzing security data.

The remainder of the paper is organized as follows: Sect. 2 discusses related
work using CNN with non-natural data. Section 3 outlines the methodology
including, a description of ordering the data. Section 4 describes the analysis
procedure and evaluation results. Section 5 summarizes and concludes this paper.

2 Related Work

2.1 Convolutional Neural Networks and Non-natural Data

As we understand the CNN capabilities, its use cases continue to expand. In this
section, we examine the use of CNN by other researchers using non-naturally
ordered data sets.

Lihao and Yanni analyze the quality of rubber tire treads in [15] using the
parameters measured during the manufacturing process. With four levels to the
procedure and eleven metrics sampled at each level, this provided a 4 × 11
matrix. After vectorizing these parameters, filtering for noise, they then feed
them to a CNN, achieving a 94% accuracy. The order of the grid construction
wasn’t discussed.

Using a one dimensional CNN as a feature extractor for other machine learn-
ing algorithms (k-Nearest Neighbor with k = 1, Support Vector Machine, and
Random Forest), Golinko et al. in [6], examine with non-natural “Generic” data
if the ordering of the source data for the CNN has a performance impact on the
final classifying algorithm. Using statistical correlation as a method for identi-
fying relationships of adjacent data they show that not pre-ordering the data
for CNN feature extraction is detrimental. They show using correlation as an
ordering offers improvement in most cases, especially for kNN and SVN, improv-
ing accuracy from 76% with no feature extraction to 82% if the features were
ordered by correlation prior to CNN feature extraction.

In [22] Park, et al. used information from robotic sensors and actuators to
design a robot collision detection system using 66 features. They tested both a
Support Vector Machine Regression and a one-dimensional CNN and were able
to show that the CNN would perform better if it trained with enough data, but
the SVMR performed better with less training. The construction of vector order
wasn’t discussed.

With connected and automated vehicles, Van Wyk, et al. [22] used cross-
related sensor data (local speed, GPS location, and accelerometer) fed through
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an analyzer to identify whenever any of the sensors behaved anomalously. They
tested different analyzers using a Kalman Filter, CNN, and a CNN-KF hybrid.
Each had its unique benefits. Order of the grid constructing wasn’t discussed,
but trivial with three sensors over time.

2.2 Convolutional Neural Networks and Security

In security-based applications, CNNs have found value. Their ability to extract
features out of a large data pool enables the algorithm’s non-linear space to
find patterns instead of statically looking for distinct signatures, allowing the
dynamic/online detection of zero-day attacks. These data sources are often non-
natural.

After minor pre-processing of raw IP traffic packets which included stripping
the physical protocol layer, Zhang et al. [23], then they analyzed the resulting
grids using CNN, LSTM, and a hybrid of the two, for both binary classification
(benign/maleficent) and multi-classification (benign + 10 maleficent types). He
shows they all achieve quite remarkable, near-perfect results. Differences being
for binary classification the hybrid is slightly better than a CNN, which is better
than LSTM. With multi-classification, CNN may have some minor advantage in
precision over the hybrid, but LSTM is behind both. Data order was defined per
the packet specification by the order of packets received.

Using process metrics as they are reported from hypervisors in a cloud envi-
ronment Abdelsalem et al. in [1], places them in a grid-like structure looking for
malware as it is injected into the virtual machines. Per time segment this pro-
duces a set of 35 metrics that are captured for each process running on the VM.
They are compiled into a process row metric column matrix, which is supplied
to a Lenet-5 [17] CNN. Using the order as found in the logs and specifications,
they achieved an 89% accuracy. Using the same data set and ordering scheme,
McDole et al. [18] follow up with research analyzing different CNN architec-
tures. With ResNet [7] and DenseNet [11] he showed that Dense-121 performed
the best at 92%, but Lenet-5 trained in an order of magnitude less time and
detected in one-third. Kimmell et al. [13] includes the use of other deep learning
models, Recurrent Neural Networks, by testing the validity using Long Short
Term Memories and Bi-Direction LSTMs. In it, they explore if the order has an
effect on training and discover that it does affect performance metrics for both
models. For example, a precision of 99.95% with one random order and 98.46%
with another.

Our previous research expands on the techniques discussed by Abdelsalem
et al. [1] by exploring the relationship between ordering of the rows, columns,
and CNN performance. We identify several structural relationships on which
to base our ordering scheme, we include the use of a statistical relationship
as an option for ordering the metric columns, and we compare those against
a background of random orderings. We found that by establishing order using
statistical correlation as a basis, we increased overall performance and achieved a
99% accuracy in detecting injected malware. We also show that using structural
relationships as an ordering appears to have no more advantage than a random
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Table 1. Virtual machine process metrics

Metric category Description

Status Process status, Current working directory

CPU information CPU usage, CPU user space, CPU system/kernel space, CPU
children user space, CPU children system space

Context switches Voluntary context switches, Involuntary context switches

IO counters Read requests, Write requests, Read bytes, Write bytes, Read
chars, Write chars

Memory information Swap memory, Proportional set size (PSS), Resident set size
(RSS), Unique set size (USS), Virtual memory size (VMS),
Dirty pages, Physical memory, Text resident set (TRS),
Library memory, Shared memory

Threads Used threads

File descriptors Opened file descriptors

Network information Received bytes, Sent bytes

Group information Group ID real, Group ID saved, Group ID effective

order, but statistical relationships offer some insight. Based on this related work,
our research goals are:

– Further explore finding a preferred or even an optimum order for any data
that is supplied to a specific CNN model for analysis.

– Improve dynamic malware detection by choosing the proper CNN model and
pre-processing the data with regards to row and column ordering.

– Explore the use of this data set with later models of CNN architecture.

3 Methodology

3.1 Dataset - Metric by Process Grids

The source of the data are samples taken from virtual machines in a cloud
IaaS environment. These virtual machines are arrayed as a LAMP stack hosted
web-site. The application server is injected with malware halfway through the
experiment. Each sample is for a specific process running on the VM kernel and
contains a series of M number of metrics per process (Table 1) during a segment
in time. Stacking P number of processes that are captured during a single slice
of time results in the matrix:

Xt =

⎡
⎢⎢⎢⎢⎢⎣

m1 m2 . . . mM

p1 xm1p1 xm2p1 . . . xmMp1

p2 xm1p2 xm2p2 . . . xmMp2

...
...

...
. . .

...
pP xm1pP

xm2pP
. . . xmMpP

⎤
⎥⎥⎥⎥⎥⎦
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For our experiments, the 35 metrics expanded through one hot encoding to
M = 75 metric columns and we made available room in the matrix for as many
as P <= 150 process rows. The 29+ million process samples were organized
around 114 experiments (infections), and consisted of 31,064 matrices, about
half of which are considered infected. The experiments were split between 80%
training, 20% validation, and 20% testing. The entire grid set for each experiment
was included in the group it was assigned, so no experiment was split between
training, validation, and testing.

3.2 Row and Column Ordering Algorithms

This paper is to demonstrate if row/column ordering effects performance of
different CNN models. Our initial method was to randomly sort the rows and
columns. We choose ten rows and column orders which combined give us 100
unique ordering to use as a backdrop for comparison.

In our previous work we explored the use of structural relationships as one
method for establishing an order. We found several relationships as determined
by specification, log location, process number, parent/child and sibling status,
related virtual machines, and naming convention. In these cases we found on
average they performed no better than the random option if not worse. Since
these ordering methods were previously defined we include them in our process-
ing and as part of the general backdrop along with the random 100. We do not
examine them specifically in the evaluation section of this paper.

Perhaps images provide us some insight on how to best order our matrices.
CNN’s are used to identify objects. What makes up an object in an image?
Statistically, an object is a set of highly related pixels. All of the pixels will
have a similar shade. Pixels outside the object boundaries usually have few
patterns that match inside an object. This edge can be found using the statistical
correlation relationship minimum. It is this fact that led to many advances in
image compression techniques [12,17,21].

Table 2. Metric and process correlation functions

Metric statistical correlation function

ρmimj =
E(xmi

xmj
)−E(xmi

)E(xmj
)√

E(x2
mi

)−E(xmi
)2·

√
E(x2

mj
)−E(xmj

)2
(1)

Process statistical correlation function

ρmkpipj =
E(xmkpi

xmkpj
)−E(xmkpi

)E(xmkpj
)√

E(x2
mkpi

)−E(xmkpi
)2·

√
E(x2

mkpj
)−E(xmkpj

)2
(2)

We hypothesize that we should create artificial objects by grouping the rows
and columns to increase the average statistical relationship between neighbor-
ing features while decreasing the overall entropy of the image. In our previous
paper, we found a relationship, statistical correlation ρmimj

as shown in Table 2,
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between metric columns mi and mj for all processes, comparing results from a
LENET-5 style CNN with relu, we found that ordering based on statistical cor-
relation improved performance. We attempted to disperse the artificial objects
by minimizing the correlation between columns and it had a negative impact
on performance. We include these column orderings in our evaluation details
using other CNN models. This consists of three relationship functions, metric
correlation (Table 2), the absolute value of the correlation ρABSmimj

= |ρmimj
|

to increase object edge creation, and anti-correlation, ρANTImimj
= 1−|ρmimj

|,
to test a counter hypothesis dispersing the objects and increase the entropy.

In our previous work, we struggled to derive a statistical relationship for
the process rows. Since there could be as many as 150 processes statistically
related over the 35 metrics, each sample unique per process, our initial queries
became infeasible. They suffered from a vanishing correlation when a large set
of samples that are not related to the feature are included in the calculations.
For this research, we pared down the queries so only related a pair of processes
pi and pj over a single metric mk were calculated at a time. We reduced the
data set for this specific relation value to only include samples when these two
processes were running on the same machine at the same time. This reduced the
query time from what was months, to all process pairs around a single metric,
ρmkpipj

∀i, j, in roughly 24 h. We then incremented through each metric. Once
these calculations were finished, we had a full set of process pair correlation
values per metric, ρmkpipj

∀i, j, k.
Summing the correlations for a single pair we had a statistical relationship

value between the processes ρSUMpipj
:

ρSUMpipj
=

M∑
k=1

(ρmkpipj
) (3)

Since we processed the row relationship values per metric before we summed
them, we purposely chose which order of metric to derive these relationship val-
ues. We already had a relative importance order in our metric correlations from
our previous research (Eq. 1 above). By summing all of the columns correlations
for a single metric:

ρTOTmi
=

M∑
j=1

(ρmimj
) (4)

This is the total metric correlation on which to order their importance, largest
to smallest. We also do the same for process rows, resulting in total process
correlation:

ρTOTpi
=

P∑
j=1

(ρSUMpipj
) (5)

Along with our fully correlated rows ordered derived from Eq. 3, we took the
opportunity to tests some other options derived from this function. Like metric
columns, we test similar relationship ideas with both the absolute values of
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the correlations, ρABSpipj
=

∑M
j=1

∣∣ρmkpipj

∣∣ and anti-correlations ρANTIpipj
=∑M

j=1(1 − ∣∣ρmkpipj

∣∣).
With this statistical relationship value, we rank the importance of each metric

column and process row with each other. We built a methodology to construct
the order. The process is generic and modular with regards to the data source
,fi row or column, and the function used to derive the statistical relationship
value ρfifj

. The ordering methodology uses the steps in Algorithm 1.

Algorithm 1: Derive Statistical Relationship Order
For features along an axis, fi, define a function, ρfifj

∀i, j;
From ρfifj

define ρTOTfi
∀i;

Create a selection pool of features P � fi;
while P �= ∅ do

Create an empty bidirectional queue Q for features fi;
Find max(ρTOTfi

)∀fi ∈ P ;
Place the corresponding feature fmax(ρ) onto Q;
Remove fmax(ρ) from P ;
Create two pointers left, L, and right, R; L,R ∈ Q;
Point L and R towards fmax(ρ) in Q;
while P �= ∅ and not(STOP) do

if ∃ρfLfi
∀fi ∈ P or ∃ρfRfi

∀fi ∈ P then
Find max(ρfLfi

, ρfRfi
)∀fi ∈ P ;

Place the feature fmax(ρ) next to fL or fR on Q;
Remove fmax(ρ) from P ;
Move the pointer, L or R, to the new feature fmax(ρ) in Q;

else
Stack current queue Q into a final ordered axis V ;
STOP

end
end

end
Result: A vector V of features fi that are ordered by the relationship

function, ρfifj

Derive Statistical Relationship Order

Occasionally, there are ties. This was especially true for the anti-correlated
function. Many pairs of processes rows had no correlation between them. We
would settle ties by examining the next set of neighbors to see which set increased
the relative total relationship value of the entire grid.

After compiling the statistically related orders with the previously defined
order sets, we have a total of 252 distinct grid orders to compare. A visual
example of the grids in different ordering sets is shown in Fig. 2 and Fig. 3.
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We show two slices, one benign and another infected, using different row and
column ordering schemes. It includes a 3-square pixel entropy filter plot to high-
light possible patterns the CNN may be detecting. One order set, Fig. 2, has both
rows and columns correlated while the other, Fig. 3, has them anti-correlated.
You can see how we construct objects using the correlated order while dispersing
them into tiny objects using the anti-correlated order.

(a) Benign (b) Infected

Fig. 2. Visual plot of correlated samples with 3 wide entropy

(a) Benign (b) Infected

Fig. 3. Visual plot of anti-correlated samples with 3 wide entropy
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4 Evaluation

4.1 Test Beds

We run our pre-processing and analysis using two desktops with the following
specifications:

Desktop-1

– Central Processor Unit: Intel c©CoreTMi7-8700 CPU @ 3.2 GHz × 12
– Memory: 15.6 GB
– Graphical Processor Unit: GeForceTMGTX 1070i/PCIe/SSE2
– OS: 64-bit Ubuntu c©20.04.2 LTS (Gnome 3.36.8)
– CUDATM: 11.1
– Python: 3.6

Desktop-2

– Central Processor Unit: Intel c©CoreTMi7-9700K CPU @ 3.6 GHz × 8
– Memory: 15.5 GB
– Graphical Processor Unit: NVIDIA GK210GL (Tesla K80)
– OS: 64-bit Ubuntu c©20.10 LTS (Gnome 3.38.3)
– CUDATM: 11.2
– Python: 3.6

We used TensorflowTMv2 with TensorboardTM, the underlying engine, to per-
form the CNN analysis. Comparing between these machines, we found that the
Tesla could handle larger CNN models with two cores and more GPU memory,
while the GeForce machine would process about 30% faster with the later CUDA
capable features.

4.2 CNN Models - Chosen Through Experimentation

Our previous research examined the use of a shallow CNN model, Lenet-5 with
relu as an activation function. In this research, we wanted to see if our statis-
tical relationship hypothesis would hold with other forms of CNN. We initially
experimented with Resnet-50 and found that the training times took longer per
epoch and more epochs than Lenet-5. Lenet-5 would usually saturate training in
20 epochs, but Resnet-50 would take as long as 50. We shifted to c©Auto-Keras
and by 20 epochs it would settle on a plain CNN with a couple of dense layers
but fail to produce any meaningful performance.

We then took a modularly broad but targeted approach by re-coding our
test ground to use the recently released c©Keras application set of deep learning
models. Using a limited set of ordered experiments, we test model training sat-
uration. Because of our methodology, using the same data set for the different
models was simply changing the model name within the script. Our post cal-
culation analysis found that five models would saturate training much quicker
than the others, within three epochs, so we chose to compare those in order of
their release date:
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– Inception-V3 [19].
– ResNet-18 [7].
– Xception [3].
– MobileNet [9].
– DenseNet121 [11].

To help in our analysis, we examined the model summary so we could identify
the parameters count and see if there might be some relationship between that
and order performance via the architecture design. These details are found in
Table 3.

Table 3. Model parameter count and process times

CNN architecture Parameter count Desktop-2 median 3-epoch
train time (min)Functional layers Dense layers

Inception-V3 21,802,208 12,290 2:45

ResNet-18 11,186,698 162 11:43

Xception 20,860,904 61,442 6:03

MobileNet 3,230,338 6 1:20

DenseNet-121 7,031,232 16,386 3:54

4.3 Result Plots

Since malware infections are rare compared to normal machine activity, we
decided to compare the precision/recall curves. We start by showing the results
for the Inception V3 model. In Fig. 4, we see all of the PR curves as the light
background with the dark lines representing a subset of PR curves that are gen-
erated running the model over a particular order set. Note that these plots are
scaled in to 50%–100%. Here we see Inception prefers correlated columns and
ABS-correlated rows, while and correlated rows offer another well performing
alternative, but anti-correlated rows should be avoided.

We follow with the results from ResNet-18 in Fig. 5. Note that these plots are
at 0–100% scale. It’s obvious by the wide varieties in PR curves that this model
is very susceptible to minor changes in order. For this model anti-correlated rows
and columns perform better than average, while the other orderings have only
minor variation around the poor average.

Our next model is Xception, and the results are found in Fig. 6. Note that
this model seems order ambivalent with near perfect results every time, but we
see that the statistically related order performs well if not better than average.
Only the ABS-correlated columns fell below average, but this was by only 0.0007
AUC. It appears the best performance is found using correlated rows and anti-
correlated columns.

We included MobileNet as a small format option with it’s intention to be used
in mobile devices. You can find the results in Fig. 7. Like ResNet-18, MobileNet
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(a) Correlated Columns (b) Correlated Rows

(c) ABS-Correlated Columns (d) ABS-Correlated Rows

(e) Anti-Correlated Columns (f) Anti-Correlated Rows

Fig. 4. Inception V3 CNN model PR curves
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(a) Correlated Columns (b) Correlated Rows

(c) ABS-Correlated Columns (d) ABS-Correlated Rows

(e) Anti-Correlated Columns (f) Anti-Correlated Rows

Fig. 5. ResNet-18 CNN model PR curves
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(a) Correlated Columns (b) Correlated Rows

(c) ABS-Correlated Columns (d) ABS-Correlated Rows

(e) Anti-Correlated Columns (f) Anti-Correlated Rows

Fig. 6. Xception CNN model PR curves
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(a) Correlated Columns (b) Correlated Rows

(c) ABS-Correlated Columns (d) ABS-Correlated Rows

(e) Anti-Correlated Columns (f) Anti-Correlated Rows

Fig. 7. MobileNet CNN model PR curves
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(a) Correlated Columns (b) Correlated Rows

(c) ABS-Correlated Columns (d) ABS-Correlated Rows

(e) Anti-Correlated Columns (f) Anti-Correlated Rows

Fig. 8. DENSE121 CNN model PR curves

seems to be very reactive when there are changes in the order. We have these
plots at full zoom, 0–100%, to observe all of the curves. Unlike ResNet-18 (0.898
AUC), it appears to respond better on average (0.958 AUC). It also appears
that it loves any statistical relationship in column order, but choosing a random
order is better than anything we analyze for row order.
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In our final examination, we analyze Dense-121 found in Fig. 8. This like
Xception had a vary high AUC regardless of row or column order, with almost
near-perfect results every attempt. Only a couple of curves drop below 97%,
and we had the figures zoomed in at 80%–100% for that purpose. You can see
that correlated rows and columns are the best option, but all of the statistical
relationships seem to provide an average if not better result.

Looking back at the parameter count Table 3, we see that those architectures
with fewer parameters in the final dense decision layers were fragile with response
to order and performance. Even slightly changing the grid order in these models
has great impact on the results. It appears the opposite is true, that the more
parameters in the dense decision layers reduce the impact of changing the order.

We see in almost every model that using a statistical relationship to determine
a proper order does improve performance, but identifying which relationship to
use requires some experimentation. We see that ResNet architectures find gran-
ularity in the detail with an anti-correlated order, while most of the remaining
models prefer using regular correlation. MobileNet is the only model that wasn’t
responsive, and that was only when ordering the rows. It responded very well
when using any statistical relationship to order the columns.

5 Conclusion

This research gives us several points for our hypothesis.

– Order can have a major impact on CNN performance, especially when few
neurons are in the final dense decision layer.

– Statistical correlation is a solid benchmark for good performing order for most
CNN, but not guaranteed, especially for models with small dense layers.

– Resnet architectures prefer the anti-correlated ordering.
– It appears that MobileNet order response behavior is axis independent.
– Xception proved best with this data set and performed well using correlation

as an ordering scheme.

This leads us to several open questions:

– Do these observations hold true for other data?
– Does anti-correlation observation hold true for deeper versions of Resnet?
– Why does MobileNet respond so differently when comparing rows and

columns? Is it the axis size difference?
– Can we leverage our understanding of entropy to further improve CNN per-

formance?

It’s these questions that lead us into our next topic.

5.1 Future Work

To further our understanding on how order has an affect on CNN performance,
we plan on continuing our research by:
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– Examine the use of this technique using other security data sets, the CIC-
IDS-2017 in particular.

– See if this technique holds true for non-security related data sets, especially
in industrial and medical fields.

– Identify if there are other statistical relationships that could improve the
performance of the CNN using data preparation alone.
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