
Attribute-Based Access Control Policy
Review in Permissioned Blockchain

Sherifdeen Lawal(B) and Ram Krishnan(B)

University of Texas at San Antonio, San Antonio, TX 78249, USA
{sherifdeen.lawal,ram.krishnan}@utsa.edu

Abstract. Permissioned blockchain is of a great deal to enterprise uses
cases. There is a need to support access control policy review for legal
and security reasons in some use cases. Specifying and maintaining a
complex access policy for a permissioned blockchain may be well man-
aged using attributes. The ABAC policy approaches offer a solution to a
peculiar set of challenges for distributed system access control, like the
blockchain. There are studies on leveraging Smart Contracts in imple-
menting blockchain-based ABAC policy. However, most of these contri-
butions implement an Attribute-Based Access Control policy expressed
in a logical format. We proposed the ABAC enumerated policy format
as an access control mechanism for the permissioned blockchain, Hyper-
ledger Fabric network. We also proposed an algorithm for a set of policy
review problems and implemented the algorithm for a blockchain-based
policy specification.

Keywords: Attribute based access control · Policy review ·
Authorization · Revocation · Policy machine · Authorization graph

1 Introduction

The two general classes of a blockchain network are permissionless (public) and
pemissioned (private) blockchain, from the context of network entity identity.
The participants in a public blockchain network are anonymous. A federated
or centralized authority grants access to the participants of a permissioned
blockchain. The permission blockchain serves enterprise use cases where there is
a need to verify the identity of their customers, such as financial transaction that
requires the Know-Your-Customer (KYC) and Anti-Money Laundering (AML)
regulations. This work aims at the study of revocation and authorization pol-
icy review in the Hyperledger Fabric blockchain network. Hyperledger Fabric
is a pluggable, modularized, and open-source architecture for commercial-grade
permissioned distributed ledger technology (DLT) platform.

The blockchain is not an exemption to the particular set of challenges for dis-
tributed system access control. It requires a unique set of concepts and consider-
ations different from traditional systems. An important requirement is that dis-
tributed applications on multiple coordinated systems have permission to access
c© Springer Nature Switzerland AG 2022
R. Krishnan et al. (Eds.): SKM 2021, CCIS 1549, pp. 97–109, 2022.
https://doi.org/10.1007/978-3-030-97532-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97532-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-97532-6_6


98 S. Lawal and R. Krishnan

the data for processing and controlling the access to the distributed processes
and data from their local users. The Attribute-Based Access Control (ABAC)
offers a solution to the discussed problem of access policy on the blockchain net-
work. It uses dynamic attribute values for privilege assignment in a distributed
system that requires federated or autonomous control. Applications in Hyper-
ledger Fabric interact with the blockchain network by submitting a request to
operate on the ledger. A logic-based ABAC policy controls the access of these
applications on the Fabric network.

The access control model of a blockchain network is critical. Nevertheless,
the ability to create and modify policy specifications without unintended conse-
quence is of equal importance. The policy review in ABAC models that express
policy using logic-based formula has the NP-complete time complexity. For
instance, the evaluations for a given user attribute to access a particular resource.
The work in [10] shows the lack of scalability by the logic-based ABAC model like
the XACML in policy evaluation. An empirical study by Mell et al. demonstrates
that the enumerated-based policy ABAC model of the NIST Next Generation
Access Control (NGAC) is scalable [11].

This work proposes a modularized ABAC architecture of the Policy Machine
as an on-chain mechanism to control access to the blockchain ledger. The Pol-
icy Machine is the foundation for the NIST Next Generation Access Control
(NGAC) [8,9]. This work implemented the Policy Machine standard architec-
tural components on the Hyperledger Fabric network. We applied our proposed
algorithm to the authorization and revocation policy review problem of the Pol-
icy Machine. Through a set of Smart Contracts (chaincode), our implementation
stores access policy information to the blockchain ledger. The protected resource
ledger is a different ledger from the access policy information ledger. A low-level
Hyperledger Fabric API enables the communication between the Smart Con-
tracts deployed for the two types of blockchain ledgers.

In summary, the contributions of this paper include:

1. the NIST NGAC system architecture implemented for a blockchain network.
2. a proposed algorithm for the policy review of revocation and constrained

authorization in a blockchain-based Policy Machine system.

The reminder of this paper is structured as follows. In Sect. 2, we touch
on related work on this subject. Section 3 provides overview of the Hyperledger
Fabric and Policy Machine framework. Section 4 details on policy review problem
in Policy Machine. Section 5 describes the policy review algorithm to revoke
and grant (with constraint) access. An implementation of policy machine in
Hyperledger Fabric and evaluation of our policy review algorithm is in Sect. 6,
and Sect. 7 concludes this work.

2 Related Work

In this section, we touch on previous research contributions that implement
ABAC on a blockchain network. We also discuss the few contributions to ABAC



Attribute-Based Access Control Policy Review in Permissioned Blockchain 99

policy reviews in general. There is a handful of work on blockchain as an
Attribute-Based Access Control system for different domains. Pinno et al. [1],
Ding et al. [3], and Dukkipati et al. [4] study the implementation of blockchain-
based ABAC in IoT systems. Zhang and Posland studied the blockchain autho-
rization approach for Electronic Medical Records (EMRs) [5]. A granular autho-
rization scheme for blocks and attribute values query was at the core of their
research. Also, they lower the computational overhead for access decisions by
eliminating the use of Public Key Infrastructure (PKI).

Few research works are out there on blockchain attribute-based access con-
trol for the general-purpose use case [2,6,7]. Previous studies [2,7] utilized the
XACML to express access policies. We applied the Policy Machine, the NIST
implementation of the attribute-based access control framework, an open-source
project. The only generic implementation of attribute-based access control on
Hyperledger Fabric blockchain network deployed ABAC components as smart
contracts to control access to an off-chain system [2]. In contrast, we imple-
mented Smart Contracts for access control to the blockchain ledger. This work
includes the capability for review of authorization and revocation.

Mell et al. improve the efficiency of the existing functions that answer users’
capability and object access entry queries [11]. Their contribution reduced the
computational overhead of capability and access entry queries using an optimized
graph search algorithm. We proposed an algorithm for the policy review ques-
tions not addressed by the NIST Policy Machine specification or any previous
research work.

The analysis of ABAC policies through the category-based metamodel [12]
addresses a similar set of policy review questions in the NIST Policy Machine
specification. The policy review algorithm we proposed answers question not
covered by the NIST Policy Machine or any previous research work.

3 Background

3.1 Hyperledger Fabric

Hyperledger Fabric core building blocks are the distributed ledger, different types
of nodes, chaincode, channel, and Membership Service Provider (MSP).

Hyperledger Fabric blockchain ledgers are deployed on peer nodes to store
assets. An asset is a representation of valuable items digitally stored on the
blockchain network. Participants on the blockchain network can trade (trans-
fer) assets. Hyperledger Fabric ledger has two components. The first component
is the blockchain ledger that is an immutable sequence of transaction blocks.
The second component is the state database that contains the current value
of the key-value pairs created, modified, or deleted by transaction requests in
the blockchain network. Blockchain transaction occurs when a client application
invokes the programmable business logic (smart contract/chaincode) to read or
write from the ledger.

The Hyperledger Fabric has three types of nodes - client, peer, and orderer
nodes. The client node has an application that provides an interface for users to



100 S. Lawal and R. Krishnan

invoke smart contracts by sending a transaction proposal to a peer node. The
peer nodes are where the shared ledger resides and their installed chaincode
mediated end-user read/write operations to the distributed ledger. The orderer
nodes perform the ordering of transactions on a first-come-first-serve basis for the
blockchain network. It distributes the ordered blocks to peer nodes. Hyperledger
Fabric allows the integration of other implementation of the orderer service apart
from the out-of-the-box Kafka and Raft varieties.

A smart contract is a code packaged as a chaincode in Hyperledger Fab-
ric. It manages access and modifications to a set of key-value pairs in the state
database when invoked by client applications external to the blockchain network.
A channel is an isolated overlay of the blockchain network on the Hyperledger
Fabric network that provides data privacy and confidentiality. Each channel has
a ledger shared across the peers on the channel, and only participants authen-
ticated to the specific channel can transact on such channel. The Membership
Service Provider (MSP) governs the validity of credentials for a group of par-
ticipants on the network. Transaction authentication and validation respectively
by client and peer node requires identity credentials. There’s a need to install
chaincode on a channel before end-user invocation to read and write to the ledger
through an application or client node CLI.

3.2 Policy Machine Basic Elements and Relations

Policy specification in Policy Machine has an annotated Directed Acyclic Graph
(DAG) representation. The node of the Policy Machine authorization graph is
the of Policy Elements (PE). The policy elements are the finite sets of Users (U),
Objects (O), User Attributes (UA), Object Attributes (OA), and Policy Classes
(PC). An assignment relations in Fig. 1 are unlabeled DAG edges between the
ordered pair of a user to user attribute node, object to object attribute node, an
attribute to an attribute of the same type, and user or object attribute node to
the policy class node. Any outward unlabeled edge (assignment relation) from a
source policy element must terminate at a policy class of an authorization graph.

An association relation in Fig. 1 is an annotated edge between user attributes
and user attributes or object attributes. For example, the association edge
(Group Head, aarsi, Retail & Foreign Serv) specifies that individuals with a
sequence of assignments to the Group Head can execute the actions enabled
through administrative access right set aarsj on Retail & Foreign Serv and the
policy element Retail & Foreign Serv contains. The association relation is par-
titioned into two as administrative (a-association) and resource (r-association)
association.

An association is a relation represented by labeled (annotated) downward-
arcing edge from a user attribute node to an attribute (user attribute or object
attribute node). For example, in Fig. 1, the association triple (Group Head, aarsi,
Retail & Foreign Serv) implies that a user who has a path to Group Head is
authorized to perform operations enabled by aarsi on Retail & Foreign Serv
and policy element that has a sequence of assignment relation to Retail & For-
eign Serv. An association grants access through a set of resource access rights



Attribute-Based Access Control Policy Review in Permissioned Blockchain 101

(i.e., r-association in the legend) or a set of administrative access rights (i.e.,
a-association in the legend). The policy elements and the relations constitute
the authorization graph.

4 Policy Review Problem in Policy Machine

The Policy Machine authorization graph can grant access by creating assignment
and/or association relations. Likewise, the deletion of assignment and/or associ-
ation relations may revoke access. Given the hierarchical structure of the Policy
Machine, for a lot of scenarios, we can grant or deny access in various ways. How-
ever, a subset of the possible ways of allowing or denying access may contradict
another policy. Also, some of the approaches of granting or denying access may
have unintended authorization or revocation. The proposed algorithm of this
paper generates a comprehensive list with the combination of relations to delete
or create for revoking or authorizing access requests, respectively. The algorithm
result provides the Policy Machine administrator guidance on the approach for
access authorization or revocation.

We demonstrated in the coming example how the number of approaches to
grant access explodes and how utilizing constraints can limit the authorization
approaches.

Example: Figure 1 shows the authorization graph for a financial institution
with the policy class called BankOp Access. The task ‘trans-T’ requires two
related ordered administrative operations with the permissions granted through
access rights aarsq and aarsp on Wire Trans Serv and ATM & POS Serv,
respectively. Two employees (Alice and Bob) of the financial institution each
have a different subset of authorities granted to Cathy to complete the task
‘trans-T’.

In another task, ‘T-1’ an officer in this financial institution with the
attributes ATM Custodian and Trans Serv Supervisor needs to assign a member
of the Backup Officer role to ATM Custodian for the completion of the task ‘T-1’.
Cathy has no permission to assign a Backup Officer to the ATM Custodian role
in the current transition state of the authorization graph of Fig. 1. Let’s assume
the employees (i.e., Jane and Paul) in this example with permissions enabled
by the administrative access right set, aarsi, can authorize Cathy ’s requested
access. Here are approaches that will allow the assignment of a Backup Officer
to the ATM Custodian role by Cathy :

1. Creating association: Using an association only and assuming a label (access
right) aarsk grants the permission Cathy is seeking, an association relation
from ATM Custodian, or Trans Serv Supervisor, or Op Officers to Backup
Officer, or Op Officers will authorize Cathy ’s request. There are six possible
relations to allow Cathy ’s request using association relation.

2. Creating user attribute assignment: Users with permissions from the access
right set aarsi can create an assignment to authorize Cathy ’s request. This
assignment is from user attribute nodes that are descendants of the user



102 S. Lawal and R. Krishnan

aars
aars

aarsaars

{r,w}

assignment

r-association

a-association

Fig. 1. Policy machine authorization graph

node, Cathy, to the ancestor user attribute nodes of Group Head and Group
Head. For this approach of authorization, the user attribute assignments that
conform with the DAG definition of the authorization graph are the relations
from ATM Custodian or Trans Serv Supervisor to Group Heador Regional
Head.

3. Creating user assignment: Any user with the permissions from the access
right set aarsi can use the user assignment operation to create an assignment
of the Cathy user node to either of the user attribute nodes Group Head or
Regional Head.

This illusive example above considers only single operation approaches to autho-
rize Cathy ’s request, to keep it simple. Overall, there are twelve different
approaches of creating assignment or association relation to allow Cathy to
complete task ‘T-1’. The only caveat is that only two of these twelves ways
of granting access to Cathy do not violate the constraint on the task ‘trans-T’.
Authorization of Cathy ’s request through the approaches enumerated in (1) and
(2) leaves the room for Alice and Bob to collude on the sensitive task ‘trans-T’.

In addition, this example is by no means a comparison of the more com-
plicated issues in an enterprise scenario. Note that the structure of the Policy
Machine authorization graph permits granting access using any non-redundant
combination of the three operations. For instance, using the preceding example,
permissions enabled by the access right set aarsi allows creating two assignment
operations to authorize Cathy ’s request. The sequence of operation may be a
user assignment of the user node Cathy to user attribute node Backup Officer
and the Backup Officer to a user attribute node granted the permissions of the
access right set aarsi.



Attribute-Based Access Control Policy Review in Permissioned Blockchain 103

Observation
A Principal Authority (PA) is a mandatory preexisting user in the Policy
Machine, also called the root user. The PA is responsible for the creation and con-
trol of the Policy Machine policies in their entirety. S/he fundamentally holds
the universal authority to perform all the actions within the Policy Machine
framework.

Apart from the permissions for creating and deleting policy classes and
attribute assignments to policy classes, the PA may delegate access rights to
a domain or sub-ordinate administrators. Note that the deployed system rep-
resented by the authorization graph of Fig. 1 does not include the Principle
Authority. The Principal Authority of the authorization graph created the pol-
icy elements and relations as shown in the figure. Authorities delegated to the
Group Head user attribute will suffice for creating new policy elements and
assignment and association relations.

5 Policy Review Algorithm

We now provide our graph algorithm to answer these two questions on a given
request (user, op, resource).

1. If a user is allowed to perform op on resource, what are the approaches to
deny the user access to perform op on the protected resource?

2. If a user is not authorized to perform op operation on a resource, What are
the approaches to grant the op on protected resource to the user?

5.1 Derived Functions

To generate approaches to revoke or authorize a given request in a policy graph,
we utilize the following derived functions in creating groups of attributes in the
preceding subsection. A combination of elements from these groups of attributes
enables the creation of relation(s) as an approach to authorizing a denied access.
Similarly, the deletion of the relation(s) created through elements of attribute
groups is an approach to revoke authorized access.

– tail : ASSOCIATION −→ UA: is a function that maps an edge, association
relation, (uai, arsj , atk) ∈ ASSOCIATION to the (user attribute) node uai ∈
UA it originates.

– head : ASSOCIATION −→ AT: is a function that maps an edge, association
relation, (uai, arsj , atk) ∈ ASSOCIATION to the (user/object attribute) node
atk ∈ AT it terminates. Where AT = UA ∪ OA

– anc: PE −→ 2PE: is the mapping from a policy element to the set of policy
elements that is an ancestor to the policy element.

– des: PE −→ 2PE: is the mapping from a policy element to the set of policy
elements that is a descendant to the policy element.

– PEifunc = {node | (∃pej ∈ PEi)[node ∈ func(pej)]}: is the set of all policy
elements returned by func for the set PEi, where func is anc or des.



104 S. Lawal and R. Krishnan

5.2 Groups of Attribute Enabling Authorization and Revocation

The following defined sets of (user and object) attribute groups form the basis of
our algorithm for the policy review of access authorization and revocation. We
derived the attribute groups considering the resource a user wants to perform
an action on is of type user or object. When the resource in question is a user or
user attribute, the following user attribute groups create relations that authorize
and revoke access requests.

– UA1 = {ua | ua = tail((uai, arsj , atk)) ∨ ua∈anc(tail((uai, arsj , atk)))}
– UA2 = {ua | ua∈anc(head((uai, arsj , atk))) ∧ ua∈des(user)}
– UA3 = {ua | ua∈anc(head((uai, arsj , atk))) , ua/∈ UA2anc , ua/∈ UA2, ua/∈

UA1des , ua/∈ UA1}
– UA4 = {ua | ua∈des(user) ∧ des(resource) }
Where (uai, arsj , atk) is an association relation for authorizing user to operate
on resource

Assuming we want to grant or deny access to an object or object attribute.
Combining the sets UA1, UA2, UA3, above and the following object attribute
groups enable the creation of relations that authorize or revoke access.

– OA1 = {oa | oa ∈ anc(head((uap, arsq, aor))), oa /∈ des(resource), oa �=
resource}

– OA2 = {oa | (oa ∈ des(resource) ∧ oa /∈ OA1des) ∨ oa = resource}
– OA3 = {oa | (oa ∈ anc(head((uap, arsq, aor))), oa ∈ des(resource), oa ∈
OA2des ) ∨ oa = head((uap, arsq, aor)) }
This scenario requires two association relations. The association

(uai, arsj , atk) grants authority to create or delete the relation(s) from
attribute(s) of the user to whom we want to authorize/deny access. The sec-
ond association (uap, arsq, aor) allows the creation or deletion of relation(s) to
the requested resource (object or object attribute).

5.3 Revocation and Constrained Authorization Methodology

Our policy review algorithm generates approaches to revoke and autho-
rize access to Policy Machine protected resource. The relation(s) created or
removed amongst group attributes (authorization/revocation enablers) provides
approaches to allow and revoke access.

As input, the algorithm takes a request (user, op, resource), a graph asso-
ciated with the request, and a record (authmode) with fields of key-value pair.
Firstly, if there is an association relation (policy) that grants the user the author-
ity to perform op on the resource, the algorithm generates approaches to revoke
the access. Otherwise, it produces possible relation(s) that allow the user access
to perform op on the resource. The key-value pairs from the input record allow a
policy administrator to specify modes of authorization. The algorithm can gener-
ate all possible approaches with/without constraint to authorize a request. A key



Attribute-Based Access Control Policy Review in Permissioned Blockchain 105

Table 1. Scope of authorization/revocation on attribute groups

Attribute groups Pattern of relations(s) Authorization effect

UA1 Assignment: to No effect

UA2 Assignment: from Access granted

Association: from or inherited

UA3 Assignment: from and to Access granted

Association: from or inherited

UA4 Association: to No effect

OA1 Association: to No effect

OA2 Association: to No effect

Assignment: from Access entry

granted

OA3 Association: to No effect

isGeneric with a boolean value of true generates all approaches without restric-
tion, while the value of false produces constrained authorization approaches.
When isGeneric is true the two other key-value pair in the record becomes null.
Another key is the denySet, and the value is a set that authorization granted or
inherited by its elements is constrained. Its value is a user attribute set.

Let’s examine the scope of access granted through the revocation/
authorization enablers attribute sets. While authorizing a request, access is
granted or inherited by some attribute groups. The table summarizes the pattern
of relation(s) created using these attribute groups and the change in capability
or access entry of these attributes after an authorization.

The column pattern of relation created (i.e., <relation/edge type> :
<direction>) in the table describe the type of edge(s) we can create from or
to elements of a given access enabling attribute set. As an example when the
resource is a user or user attribute, a possible approach to authorize access is cre-
ating an edge (assignment) from ua2 to ua1 or creating an assignment from ua2
to ua3 and creating an association from ua3 to ua4, where uai ∈ UAi. The third
column of the table signifies the change in capability or access entry of a user or
an object attribute respectively. Authorizing a request elevate the capability of
the user attributes UA2 and UA3, and access entry of object attribute OA3. A
policy administrator can constrain the authorization of a request through these
attributes with elevated capability or access entry.

For example, if the key denySet has a value UA2, the algorithm excludes
all relations(s) that authorize access through the user attribute set UA2. An
attribute set with elevated capability or access entry that is not the value of
the denySet key is also constrained through the third key limitto. The value for
the key limitto specifies the number of elements used to generate approaches to
authorize access. Its value is a user attribute set if the resource is a user or user
attribute and an object attribute set for an object or object attribute resource.



106 S. Lawal and R. Krishnan

Fig. 2. Blockchain access control system architecture for policy machine.

Assuming request = (user, op, resource), Graph = (PE, ASSIGN, ASSOCIA-
TION), authmode = {isGeneric : false, denySet : UA2, limitto : 1} are input
parameters for the algorithm, the output is a set of constrained approaches of
authorizing user request. It excludes authorization approaches using elements in
the user attribute set UA2. The value of limitto permits creating authorization
approaches using one element of UA3 or OA3 if the resource is a user or an
object type, respectively.

6 System Implementation and Evaluation

In this section, we discuss the implementation of the policy machine reference
architecture in hyperledger fabric. We used Hyperledger Caliper and simulated
policy graph to measure the performance of our policy review algorithm.

6.1 Blockchain Implementation of Policy Machine

Section 3 discussed the sets of policy elements and relations of the Policy Machine
referenced in this work. The functional architectural components (see Fig. 2) of
the Policy Machine we implemented as smart contracts in the Hyperledger Fab-
ric network are the Policy Administration Point (PAP), Policy Decision Point
(PDP), Resource Access Point (RAP). Also, the two databases of the Pol-
icy Machine standard architectural components, Policy Information Point and
Resource Repository were implemented as the Policy Information Ledger and
Resource Ledger respectively. The Policy Administration Smart Contract is an
access mediator and manages the create, read, update and delete requests to
the Policy Information Ledger. Administrative and resource users’ requests are
separately received by the Policy Administration and Resource Access Smart
Contracts. The Policy Administration and Resource Access Smart Contracts



Attribute-Based Access Control Policy Review in Permissioned Blockchain 107

forwards intercepted access requests to the Policy Decision Smart Contract that
has the logic for allowed and denied access requests.

The client modes are the Policy Enforcement Point (PEP) that imposed the
access decision returned by the Policy Decision Smart Contract and responds to
the user with the proper result. The Event Process Point (EPP) in the Policy
Machine triggers obligations, which is outside the scope of this work. As docu-
mented in the Hyperledger Fabric developer guide, an iterative process like the
policy review degrades the performance of the blockchain network. We imple-
mented an interface for the policy review as an off-chain component.

We leverage the invokeChain Application Programming Interface (API) for
the request and response between Smart Contracts (chaincode) for the different
ledgers. Assuming the Smart Contracts deployed belong to the same channel, as
an example. An application user receives access decisions through the Resource
Access Smart Contract. This Smart Contract makes a local call through the
invokeChaincode API to the Policy Decision Smart Contract for access request
decisions. This implementation considers only chaincode invocation from another
chaincode when on the same channel. Recall that the Policy Information Ledger
preserves the abstract representation of the policy element and relations for the
Resource Ledger. To maintain consistency between the two ledgers, the Policy
Decision Smart Contract needs read and write access to the two ledgers. In a
network configuration that the Policy Decision Smart Contract is on a different
channel with the two ledgers, any (delete/create) modification request will not
reflect in the blockchain ledgers.

6.2 Performance Evaluation

We present the details of our experiments carried out for the system evaluation.
The experiments were in two steps, an on-chain that reads the Policy Information
Ledger and an off-chain policy review analysis. An iterative process in the policy
review algorithm will degrade the blockchain network performance if deployed to
the network. We used a virtual machine configured with 2 CPUs, 10 GB memory,
an Ubuntu Linux OS 16.04 LTS, and Hyperledger Fabric version 2.2. Our Fabric
network for this experiment has a single Raft orderer node, two peer nodes on
the same channel, and a LevelDB database.

We created a policy graph generator script that simulates the creation of pol-
icy elements to the Policy Information Ledger. The policy graph comprises a pol-
icy class, 300 user and object attributes, and 200 users and objects. The Hyper-
ledger Caliper version 0.4.2 enables us to generate workloads for the read policy
graph transaction into our configured Fabric network. Hyperledger Caliper is a
performance benchmark framework that provides different blockchains a suite
of performance evaluation outcomes. To test the performance of our algorithm
another script reads the policy graph ledger, simulates requests for authoriza-
tion and revocation, and sets values for authorization mode record. The graph in
Fig. 3 shows the average latency for reading the policy graph using the Caliper.
Also, on the same graph, the average response time to generate revocation and



108 S. Lawal and R. Krishnan

Fig. 3. Average latency for number of transactions and access requests

constrained authorization approaches for the request sizes are shown. The pol-
icyRead average latency varies in the range of 0.36 to 0.44 s for the number of
transactions. The average response time of the policyReview increases as the
number of requests for revocation and constrained authorization increases.

7 Conclusion

The Policy Machine is a promising alternative for logically expressed attribute-
based policies with the prohibitive computational overhead in the policy review.
It is feasible to perform policy reviews or queries using Policy Machine imple-
mented access control for a permissioned blockchain. Apart from Policy Machine
implemented in Hyperledger Fabric, we implemented our proposed algorithm
that reviews authorization and revocation of access policy. Through the illustra-
tive example, our proposed algorithm can help an administrator from granting
access inadvertently. Our experimental results presented the evaluation of read-
ing the Policy Information Ledger on the Hyperledger Fabric network and the
response time for a policy review of various request sizes.

Acknowledgements. This work is partially supported by NSF grants HRD-1736209
and CNS-1553696.

References

1. Pinno, O., Gregio, A., De Bona, L.: ControlChain: a new stage on the IoT access
control authorization. Concurr. Comput. 32(12) (2020)



Attribute-Based Access Control Policy Review in Permissioned Blockchain 109

2. Rouhani, S., Belchior, R., Cruz, R., Deters, R.: Distributed attribute-based access
control system using permissioned blockchain. World Wide Web (Bussum) 24,
1617–1644 (2021)

3. Ding, S., Cao, J., Li, C., Fan, K., Li, H.: A novel attribute-based access control
scheme using blockchain for IoT. IEEE Access 7, 38431–38441 (2019)

4. Dukkipati, C., Zhang, Y., Cheng, L.: Decentralized, blockchain based access control
framework for the heterogeneous Internet of Things. In: Proceedings of the Third
ACM Workshop on Attribute-Based Access Control, pp. 6–69 (2018)

5. Zhang, X., Poslad, S.: Blockchain support for flexible queries with granular access
control to electronic medicalrecords (EMR). IEEE International Conference on
Communications (ICC) 2018, pp. 1–6 (2018)

6. Guo, H., Meamari, E., Shen, C.: Multi-authority attribute-based access control
with smart contract. In: Proceedings of the 2019 International Conference on
Blockchain Technology, pp. 6–11 (2019)

7. Di Francesco Maesa, D., Mori, P., Ricci, L.: A blockchain based approach for the
definition of auditable access control systems. Comput. Secur. 84, 93–119 (2019)

8. Ferraiolo, D., Gavrila, S., Jansen, W.: Policy machine: features, architecture, and
specification. National Institute of Standards and Technology Internal Report
7987(2014)

9. Ferraiolo, D., Atluri, V., Gavrila, S.: The policy machine: a novel architecture and
framework for access control policy specification and enforcement. J. Syst. Archit.
57(4), 412–424 (2011)

10. Biswas, P., Sandhu, R., Krishnan, R.: Label-based access control: an ABAC model
with enumerated authorization policy. In: Proceedings of the 2016 ACM Interna-
tional Workshop on Attribute Based Access Control. ACM Press (2016)

11. Mell, P. James, S., Harang, R., Gavrila, S.: Restricting insider access through
efficient implementation of multi-policy access control systems. In: Proceedings of
the 8th ACM CCS International Workshop on Managing Insider Security Threats
(MIST 2016). ACM, New York, pp. 13–22 (2016)

12. Fernandez, M., Mackie, I., Thuraisingham, B.: Specification and analysis of ABAC
policies via the category-based metamodel. In: Proceedings of the Ninth ACM Con-
ference on Data and Application Security and Privacy (CODASPY 2019). Associ-
ation for Computing Machinery, New York, pp. 173–184 (2019)


	Attribute-Based Access Control Policy Review in Permissioned Blockchain
	1 Introduction
	2 Related Work
	3 Background
	3.1 Hyperledger Fabric
	3.2 Policy Machine Basic Elements and Relations

	4 Policy Review Problem in Policy Machine
	5 Policy Review Algorithm
	5.1 Derived Functions
	5.2 Groups of Attribute Enabling Authorization and Revocation
	5.3 Revocation and Constrained Authorization Methodology

	6 System Implementation and Evaluation
	6.1 Blockchain Implementation of Policy Machine
	6.2 Performance Evaluation

	7 Conclusion
	References




